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Abstract—Two-dimensional self-consistent micromechanical dumage models are presented for
microcrack-weakened brittle solids under “cleavage 1™ deformation processes. The proposed frame-
work basically follows the previous work of Horii and Nemat-Nasser (1983, J. Mech. Phys. Solids
M), 155-171) and Sumarac and Krajcinovic (1987, Mech. Muter. 6, 39-52). Thermodynamic
basis. microcrack opening displacements and damage-induced inclastic compliances are derived.
Microcrack evolutions (growth) are characterized through the use of fracture mechanics stability
criteria and microstructural microcrack geometry. Mode I mode [ and mixed mode microcrack
growth are considered. Simple and efficient computational algorithms as well as three detailed
numerical simulations arc also presented to illustrate the potential capability of the proposed
micromechanical damage models. In particular, no fitted “material parameters™ are needed. More-
over, loading, untoading stress paths and nucrocracks status changes in opening, closing are trivially
accommodated in this work.

1. INTRODUCTION

Micromechanical damage models for microcrack-weakened brittle solids are presented
within the context of the self-consistent method and damage mechanics. For simplicity, only
two-dimensional problems are considered. Though phenomenological continuum damage
models provide a viable constitutive framework for eflicient modcelling of brittic solids (c.g.
concrete, mortar and brittle composite materials), typically they do not offer pereeptive
descriptions of microstructural microcrack kinetics. Further, use of several fitted “material
parameters™ in damage evolution equations only renders vague and averaged information
on underlying microcracking processes at the microscale (Krajeinovic and Fanella, 1986).
Therefore, micromechanical damage theories, which incorporate microstructural and mic-
romechanical information into the damage mechanics framework, are warranted.

For a hiterature review on continuum damage mechanics, see, ¢.g. Krajeinovic (1984,
1986). Ortiz (1985), Ju (198Y). On the other hand, micromechanical damage theorics
(“process models™) are limited in the current literature. Some valuable examples are Wu
(1985), Krajcinovie and Fanella (1986), Sumarac and Krajcinovie (1987, 1989), Fanclla
and Krajeinovie (1988) and Krajeinovic and Sumarac (1989). In addition, micromechanical
“non-process” damage models (i.e. no microcrack growth) were proposed, for instance, by
Budiansky and O'Connel (1976), Hoenig (1979), Horii and Nemat-Nasser (1983) and
Kachanov (1987) for static stable microcracks. Some single crack stress and crack opening
displacement analyses (boundary-value problems) were proposed by, for instance, Willis
(1978). Sneddon and Lowengrub (1969), Hoenig (1978, 1982) and Mura (1982). Morcover,
certain valuable non-process, strong microcrack interaction analyses (not quite damage
constitutive theories) were proposed, ¢.g. by Horii and Nemat-Nasser (1985a), Chudnovsky
et al. (19872, b) and Kachanov (1987).

An outline of this paper is as follows. Two-dimensional microcrack opening dis-
placements, effective overall (secant) compliance moduli and thermodynamic basis are
given in Section 2 for initially lincar elastic (isotropic or anisotropic) brittle solids within
the context of the sclf-consistent method. It is assumed that distributed microcrack con-
centration justifies the use of effective continuum medium theory. The microdefects are
considered as line microcracks and microcrack intcraction is assumed to be weak, or at
most. moderate. Thus, effects of strong microcrack interaction and exact locations of
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microcrack centers are not accounted for in this paper (see Kachanov, 1987). Localization
failure modes are not considered. either. In Section 3. mode 1. mode Il and mixed mode
discrete microcrack kinetic equations are examined based on microstructural microcrack
geometry and fracture mechanics stability criteria tor brittle “cleavage 17 deformation
processes (Ashby, 1979 Sumarac and Krujcinovie. 1987). No phenomenological (fitted)
“material parameters™ are used in kinetic equations of microcrack growth. Further. loading
unloading stress paths are permitted. and microcrack status changes from opening to closing
(or vice versa) are trivially accommodated. In Section 4, we present efficient computational
algorithms for the proposed micromechanical damage models. Mode [, mode 11, and mixed
mode numerical simulations are also presented in Section 4.

2. BASIC FRAMEWORK OF SELF-CONSISTENT ELASTIC-DAMAGE MODELS

In this section, we present thermodynamic basts of damage mechanics, derive and
summarize symmetric or non-symmetric “displacement transformation matrices™ B and
anisotropic overall (secant) elastic-damage compliance moduli S for brittle materials. The
matrix material is assumed to be perfectly lincar elastic.

2.1. Thermodynamic basis

[t has been shown [see, e.g. Simo and Ju (1987). Ju (1989)] that there exists a one-to-
one correspondence between the fourth-order elastic-damage secant compliance tensor S
and the fourth-order anisotropic damage tensor D (signifying volume average microcrack
density, sizes, orientations and opening, closing status). Therefore, it is rational to treat the
secant compliance S(D) itself as the anisotropic damage variable. Within the framework of
the homogenization concept for inhomogencous ctfective continuum medium, fet us define
the homogenized (volume-average) complementary free energy function as (see also Krajei-
novic and Sumarac, 1989)

a:S5(D):a (1

x:

where & is the volume-average stress tensor (Hill, 1965). By the Clausius Duhem inequality
for isothermal process, we have (with & denoting the volume-average strain)

$—a:E>=0 (2)
where [according to (1)]
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The standard Coleman’s method then leads to the following macroscopic stress strain faw
and the damage dissipative incquality

§=S8:
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From eqn (4b). it is obscrved that the evolution S plays an essential role in microcrack
energy dissipation and evolutions (i.c. ““process models™). During a damage loading process
(in which some microcracks increase their lengths), the total strain tensor £ is amenable to
an additive decomposition: & = &+&, with & and & denoting the clastic and inclastic
(damage-induced) strains, respectively. It is assumed that £ = 0 upon complete unloading :
that is, the residual strain at zero stress is negligible for brittle materials. The clastic-damage
secant compliance tensor is also suitable for an additive decomposition: § = §*+ S with
S° and S* denoting the virgin undamaged elastic compliance and the damage-induced
additional compliance. respectively [sce. e.g. Mura (1982), Horii and Nemat-Nasser (1983)].
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It is emphasized that once a matenial contains distributed microcracks. the material
becomes inelustic due to its load-path dependency. There are different stress—strain curves
corresponding to different load paths leading to same final stress state. Under some loading,
unloading paths within the context of “non-process models™. a damaged material may
exhibit linear and reversible response within a limited range. However. one should not
regard the dumaged material as a perfectly elastic one. For example, when damage state D
is fived (i.e. no microcracks increase their sizes or change opening closing status) and no
frictional slip occurs. the overall response remains linear and reversible and therefore we
have & = ¢y da and § = &7, ¢a° (symmetric). Nevertheless, this is not true when damage
state 15 not fixed or when frictional slip is taking place. In addition. the differentiation
of (4a) renders elastic-damage tangent compliance tensor §“™ under dumage loading
condition:

(&1 &
Sure =~ =84+ =5 5
o o

From (5), it is clear that in general, §"" % §.

Assuming moderate microcrack concentration and microcracks being away from the
representative volume boundaries, we have 6 x o7, where 7 signifies the remotely applied
stress field around the representative volume boundaries (Hill, 1965). Thercfore, the
microcrack-induced inclastic strain may be approximately expressed as (Vakulenko and
Kachanov, 1971 Kachanov, 1980 Horii and Nemat-Nasser, 1983)

l - k)
o= ‘,VE (h@n+n®b)dS| . (6)
¥ o LJdy

where Vs the representative volume, T is a sumimation operator over all active (open or
sliding) microcracks, b denotes the cruck opening displacement vector, and n significs the
nornal vector associated with b, For two-dimensional line microcracks, egn (6) can be
rephrased as (with A denoting the surface arca of the representative volume)

1y
ed:j!zUm@nH@wJ . %)
PR I

As wis pointed out by Krajeinovic (1985), the alternative definition of the dumage
variable in terms of £ in (6) or (7) is thermodynamically incorrect. The reason is obvious
as follows. During"mode I clastic unloading, b decreases and the damage variable [defined
by eqn {6} or (7)] changes its state, thus leading to encrgy dissipiation even under “mode
I elastic unloading. Theretore, although egn (6) is an acceptable measure of the damage-
induced inclastic deformation, it is not a good choice for anisotropic damage variable, The
derivation of appropriate “thermodynamic force™ conjugate to the “rate of change of the
microcrack density” will be given in the next section,

2.2, Elastic-dumage secant comipliunce
In a two-dimensional setting (e.g. plane strain), egn (4a) can be rewritten using Voigt's

notation {sce cgn (22) in Horii and Nemat-Nasser (1983))
¢ =05, i.j=1.2.3. 8)

where 6, = &,,, 6» = fap. 63 = 28,0 Ty = G, Ty = 6,3, Ty = 5. and S is a three by three
clastic-damage sccant compliance matrix. For open microcracks, the secant compliance is
in fact the unloading compliance. Therefore, the secant compliance S is symmetric (though
anisotropic) according to Section 2.1. In the case of mode I frictional sliding on closed
microcrack faces, by contrast, the clastic-damage secant compliance S is nonsymmetric
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Fig. 1. The local (primed) and global Cartesian coordinate systems,

(S, # S,) during either loading or unloading processes. In addition, coordinate trans-
formation matrices g and g’ relating the secant compliance matrices S and § (in global and
local Cartesian coordinate systems, respectively) are available from eqn (24) in Horii and
Nemat-Nasser (1983):

S =TS S0 = G, S (9a)
cos* 0 sint 0 'sin 20 TcostO o sint 0 sin 20
(] = sin® 0 cost ) ~lsin 20 : [;.',.] =| sin"0  cosTO —sin20f (9b)
—~sin 20 sin 20 cos 20 L=sin 200 lsin 200 cos 20

Itis remarked that the “local™ (primed) coordinate system is the intrinsic coordinate system
associited with a particular microcrack such that the y-axis is parallel to the microcrack
unit nornl vector n, see Fig. 1. Within the context of the selt-consistent method, it remains
to deternmine the erack opening displacement b’ across an isolated line-microcrack embedded
into an “equivalent™ two-dimensional anisotropic homogencous clastic solid. First, from
the geometric compatibility condition, we obtain

RS S ) (10)

For an open microcruck, substitution of (8) into (10) then yields (Lekhnitskii, 1950)

g U s U (250, +54) U ag U e CU_ (1
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where Cis a proper stress function. The characteristic equation of (1) takes the form:

S At =28 A+ (08, + 80 =280+ 50, = 0. (12)

Of course, the elastic-damage secant compliance moduli S, are as yet unknown in accordance
with the self-consistent method. According to Lekhnitskit (1950) and Sih er al. (1965), the
displacement jump across an (kth) open microcrack (under mode I or mixed I/ mode) in
an anisotropic homogencous clastic solid can be expressed as:

PR =2 Ja M = xS (P s+ ras )+ (5 + 55 ER (13a)

. i . . 14)
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AP = 2\/(,-“‘"——,\' =S5, ( - A SR ,>r:+ . BRI I"”;~ r‘:l . (13b)
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where 4; = ri+1is; (j = 1. 2). with 5. 5% > 0. are the roots of the characteristic equation (12).
Equation (12) 1s a fourth-order equation and can be solved analytically. Further, let us
define the two by two “displacement transformation matrix™ B as:

S1(51 +5%) S (rish+r5s5)) k)

Yy = | rsy+r.s) - Ky 55

B1= g, B3 s (e )| (14)
(ri-+s;-)ri-+s:] ricHsT T4

so that (13a.b) may be recast as

B =2 /d T~ xBY G, (15)

From eqn (14), it appears that B is a non-symmetric matrix since the off-diagonal
components B! and BY] may not always be equal: sce also eqns (14)-(15) in Sumarac
and Krajcinovic (1989). This observation, however, is incorrect since it can be proved that
B!} = BY) is guarantecd for an open microcrack. To see this, we note that

FRAS]T = (S —isy) = A4 (16a)

rR s = (P i) (s —ish) = AhA%, (16b)

where 4% and 45 are two complex roots of (12) conjugate to the roots Ay and 4%, respectively.
Since 47, A%, Avand 2 are the roots of (12), they must satisfy

B = §ha/ S (17)

Thercfore, we arrive at

(rif 450 +557) = 84,8, (18)
o risy ) G
‘S::[r.:_’_l\_,:][r::;\.»:] = S0 +rish). (19)
et L A

Hence, B = BY) and B is always symmetric for an open microcrack. For a closed
microcrack under mode 1 frictional sliding, eqns (13a,b) and (14) must be appropriately
modified ; see Horit and Nemat-Nasser (1983, p. 162) for an approximate treatment. Essen-
tially, onec may set BY) = B =b%¥ =0, and replace a5, and &%, by 65,—6%, and
a5, + e sgn (a45,)35,, respectively. Here, g is the coeflicient of friction, and &4, is the com-
pressive normal stress transmitted across the closed crack [sce eqn (28) in Horii and Nemat-
Nasser (1983)]. Further, the matrix B* is non-symmetric as a direet consequence of
frictional slip.
Using the fact that n), = 0 and eqns (7). (8) and (13a,b), we arrive at

ey gk Sl gy o gl (20a)
. ora®? s & na®*
S = ( b ,»>5':: = —— B% (20b)
A rl‘+S,‘ r:'+S:- A
Coma% ra®? ,
o= e (14598 = T B (20¢)
(k12 C *12
S o ma N ,,',',ﬂiifff,'_,,,,,f, Soo=T4 BYY (20d)
= A [rif+s ) rim+s7] 77 A -
, nam: _ 7 (k)2 ]
s = T s+ St = T B (20¢)

SAS 21:2-C
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where S denotes the kth microcrack-induced “additional inelastic compliance™. From
eqns (20d. e). it is realized that $%' = S¥' for an open microcrack. By contrast.
SU = SU =0 and SYY # SU for a closed sliding microcrack [see eqn (32) in Horii
and Nemat-Nusser (198»)] Thus. S™" is symmerric and non-symmetric, respectively. for
an open and a closed microcrack. In addition. the inelastic compliance S* due to an ensemble
of microcracks within 4 representative volume can be expressed as

S1 = Tl glsi = ¥ Sh0 = N(St (21a)
& %

in which  signtfies the total number of active (open or sliding) microcracks per repre-
sentative-volume surface, and {-) represents the expected value. In the limit (a large
number of microcracks per representative volume). the summation operator can be replaced
by the integral operator over all active microcracks:

s = Nf S (0, a) dQ. (21b)
Q0

where p(0, «) is a joint probability density function of orientation and crack size, and Q is
the domain of all active microcracks. It is emphasized that §* depends on the yet wiknewn
clastic-damage sccant compliance S. Consequently, the self-consistent method demands
iterative schemes to solve strains and compliances. Since & = &+ &', the clastic-damage
secant compliance takes the form: § = 8"+ 8%S).

228 Remark. For mode H tnictional sliding, secant comphance moduli are non-sym-
metric and hence eqns (1) (12) should not be used. Instead, according to (8) and (10),
one should use the following equation to solve complex roots:

S At (S S A H (S LS S (S S A+ 5 =0 (22)

Thut s, egn (22) should be utilized in conjunction with egns (20a ¢) for open microcracks,
and together with egn (32) in Horit and Nemat-Nasser (1983) tor closed microcracks,
respectively. To carry out the self-consistent scheme, o general non-symmetric anisotropic
matrix iteration algorithm is warranted. In addition, numerical integration scheme for (21b)
is needed. These issues will be addressed in Scction 4.

Morcover, the “thermodynamic foree™ conjugate to the “rate of change of the micro-
crack density™ can be derived straightforwards. Let us define

7!(1“("

A
e(h) \M) k) *h) o]
‘S” = nu‘“, S or 3,, = 4 5,, (-3)

where i, j =1, 2. 3. In the spirit of thermodynamics, we may consider statistical arca-
average damage by treating ¢ and n* as random variables (not necessarily perfectly
random) ; sce also Wu (1985). Thercfore, the arca-average values may be replaced by their
appropriate expected values, Hence, we have

ra)?

(8) =$"+(8" =8"+ N< s*‘“> = S+ (S, (24)

s

in which w*' = Nra'™'*/A4 ; i.e. the non-dimensional microcrack area-concentration par-
ameter per unit surface (sce Budiansky and O’Connell, 1976). The time derivative of (24)
then yields (sce also Wu, 19835)
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ES‘“‘)
<S> = <d)|k)snu(k)>+<w(k)>< S ><$> (25)

Note that (&™) in general includes both effects of initiation of new microcracks (V) and
growth of existing microcracks (). From (25), we obtain

esm(ki
cs

$ = [|-<w‘“>< >] @S, (26)

where I is the fourth-order identity tensor. Substitution of (26) into the damage dissipation
inequality (4b) then leads to

QK -1
%& (I:l_<wnk)> <(§S )>] :(u‘)'“)(S‘(k))):& = 0. (27)

where & is now a vector of three components (7, T.. T,) for a two-dimension case. From
(27). 1t is observed that the ““thermodynamic driving force™ & conjugate to the rate of change
of the microcrack area-concentration parameter (™' is simply

o Tre o (35NT g ). "
g=lar| [1-¢o) (g (S*Y |1 4. (28)

The above resultis at variance with that given in Wu (1985, eqn (38),i.c. & = 16: (§8**): a).

The latter work, although interesting and valuable, indeed misses some terms in (28) and
hence results in some anomadies regarding thermodynamic “strain energy release rate
density™ £ Forexample, & givenin Wu (1985) may decrease while g increases, thus predicting
no further damage in the post-peak (softening) branch of the macroscopic stress-strain
curve,

2.2.2. Remark. In the case of three-dimensional isotropic scalar damage, the damage
tensor D reduces to a scalar variable . By definition, the scalar damage variable d is the
microcrack volume-congentration parameter (o™ = (Na™?*/V'>. Therefore, we have (for
three-dimensional elastic-damage) :

l o do__ ‘-f.l.__._ - QO
S=i-a% ST uzaS &

Analogous to (24), we can identify that

k) — 7____|V____‘_ 0 __
(8" = =5 S" = (S, (30)

Therefore, ¢ defined in Wu (1985) renders

E=19:(8):a=l0:¢, @3

while £ given by (28) leads to
F=lg __lﬁ_g > &_lV&:E (37)
ST =d Tii=d) -

However, &/(1 —d) is precisely the so-called “*effective stress’ & (Kachanov, 1958). Denoting
the undamaged virgin elastic stiffness by C°, we then arrive at
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where W'(€) 1s the undumaged strain energy density defined in Ju (1989).

3 MICROCRACK EVOLUTION EQUATIONS

It is likely that brittle materials (such as concrete, crystals. polycrystalline ceramics,
etc.) have initial microcracks along some weak planes (e.g. the aggregate—cement tnterface
in concrete) even before specimens are first louded. Before the initial (existing) microcracks
are arrested by some higher energy barriers (such as the cement paste in normal strength
concrete), they propagate approximately along the same weak planes in a self-similar
manner. The problem can be significantly simplified by assuming that activated initial
microcracks grow to certain characteristic final lengths along weak planes (Zaitsev, 1983
Krajeinovic and Fanella, 1986). For example. initial microcracks on aggregate-cement
interface planes of concrete may grow from 2q, (initial crack length) to 2q; (the aggregate
facet size) in an unstable manner. Inevitably, there is randomness in initial and final
microcrack lengths, orientations and center focations in brittle materials. As a consequence
of the two-stage approximation of weak-plane microcrack lengths (cither 2¢, or 24y, the
problem of keeping track of weak-plane microcrack growth in a representative volume
reduces to aseries of nucrocrack stahility checks, Thus, classical fracture mechanices stability
criteria can be used as toels o determine whether an mitial microcrack will be activared.
This procedure, nonctheless, cannot accommodate nucleation of new mucrocracks along
different weak planes.

A microcrack kinctic algorithm based on fracture criteria (see, ¢.g. Krajeinovic and
Fanetta, 1987) is intansicly seress-controlled. This type of mechanism. however, can only
depict the ascending portion of &4 macroscopic stress stramn curve, not the descending
(“softening”) portion. Before a “pomt™ on a stress strain curve reaches the peak, o stress-
controlled loading criterion is qualitatively cquivalent to a strain-controlied once. In the
“softening™ branch, however, i stress-controlled foading criterion will not suffice since the
stress level is decreasing. In fact, in the descending branch of o stress strain curve, there
must be significant number of microcrack nncleations, and henee the “cleavage 1 process
assumption is no longer vahid. These and related issues should be further investigated in
the future,

Restricting our attention to the “cleavage 17 deformation processes in this work, we
consider the following three types of damage modes under biaxial loadings: (1) mode |
(open) microcrack growth only, (2) mode 11 (closed) microcrack growth only, and (3)
mixed modes | and 1T (open/closed) microcrack growth. In particular, excellent mode |
tensile damage kinetic equations were presented by Kruajeinovie and Fanella (1986) and
Sumarac and Krajeinovic (1987), whercas valuable mode I compressive damage kinetic
equattions were proposed by Fanclla and Krajemovie (1988). Their presentations were,
nonctheless, restricted o momtonically increasing loading cases. Therefore, no unloading/
reloading stress paths or microcrack opening/closing effects were permitted in their
presentations. The restriction on status change from opening to closing {(or vice versa) can
be removed by checking the sign of individual local normiul stress. The corresponding
symmetric or non-symmetric damage-induced inelastic compliance components can be
obtained from egns (20a -¢) for open microgracks, and from eyn (32) in Horti and Nemat-
Nasser (1983) for closed microcracks. It is remarked that in general eqn (22) should be
used to solve complex roots. On the other hand, the restriction on "monotonically increasing
loads™ can be removed by computing and checking whether there are undergoing microcrack
growth (excluding those previously propagating and currently arrested microcracks). I
there is no angle fan™ domain in which additional microcrack growth is now taking place,
then the current incremental load step is in an wnfoading state. Therefore, “active microcrack
growth™ is the valid current {oading condition. regardless of prior existence (or non-
existence) of certatn “ungle fans™ where microcracks previously experienced growth.

Accordingly. the additional inclastic compliance S* takes the form :
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S! =S!+S!+S¢ (34)

where S¢ denotes the compliance contribution from undergoing microcrack growth, S¢
signifies the contribution from arrested microcracks having initial sizes 2a{’'. and S} rep-
resents the contribution from arrested microcracks having final sizes 2a{*' due to pretious
microcrack growth. In particular, if S¢ = 0. then the current load level is not high enough
to cause further damage and therefore all existing microcracks are arrested. Finally, S¥ is
added to S° to obtain the secant compliance S. In what follows. for computational simplicity,
it is assumed that all initial and final microcracks are of uniform sizes 2u, and 24, respec-
tively. For non-uniform initial microcrack sizes, we refer to Krajcinovic and Fanella (1986).

Microcrack kinking will be addressed in Section 3.3.

3.1.1. Remark. If all microcracks are open and arrested with non-uniform sizes. then
overall loading and unloading responses are linear and reversible (but not perfectly elastic).
By contrast. if some microcracks propagate. then the loading response is nonlinear. More-
over, in mode I or mixed mode I, [ with friction. some microcracks may be open and some
closed. Therefore, the resulting loading and unloading responses are nonlinear for either
“process models™ or “non-process models™.

3020 Remark. In the case of mixed mode L1 the strain encrgy release rate 67 for a
microcrack along a weak piane should include both mode [ contribution ¢7 and mode [1
contribution G',. In terms of secant compliance, G* may be expressed as (Sih er al., 1965,
Rice, 1975 Sumarac and Krajcinovic, 1989)

G =G +Gy=CYKKD =12, (35a)
e, my 1@
M) = T ; . 35b
1 2[/1'1_‘ n',l] (35b)
Therefore, we have
G o= BY R+ B+ BEOKIK,+ B K (35¢)

It is noted that A and K7, represent the mode [and 11 stress intensity tiactors at i particular
oricntation, respectively, The expressions for B} are given in eqn (14) for an open micro-
crack, and in Horti and Nemut-Nasser (1983) for a closed microcrack. The computed G’
value is then compared against a given mixed mode critical strain energy release rate G,
to determine whether a microcrack will propagate.

3.2 Mode [ microcrack growth

Under uniaxial or biaxial tensile loads, microcracks primarily grow in “mode 17
fashion. Let us define the (global, homogenized) axial tensile stress by 7, = ¢ and the lateral
tensile stress by T, = ¢*, respectively, The normal stress T4 on the fuce of a typical microcrack
at angle 0 then reads

v

Ty = gcos® 0+¢*sin* 0 > 0. 36)

According to eqn (35¢), one should compute K, Kj; and G’ even in the case of
uniaxial or biaxial tension. However, since “*mode 17 is the primary concern (Sumarac and
Krajcinovic, 1987), it is computationally simpler to use the mode [ fracture criterion. In
addition, strictly speaking. the “stress intensity factor™ used in the microcrack growth
stability criterion should take into account direct microcrack interaction effects:

f=KT—Kic =0 (37a)

where K" is the mode I effective stress intensity factor, and K¢ is the mode [ critical stress
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intensity factor for a weak plane. We refer to Horii and Nemat-Nasser (1985a) and
Kachanov (1987) for the derivation of K™ and K/ for line microcracks under various
geometric configurations. Alternatively, within the applicable range (moderate microcrack
concentration) of the self-consistent method. one may employ the simple “single crack™
stability criterion (Krajcinovic and Fanella, 1986):

S=K K= (37b)

where K| = 75,/na, is the mode [ stress intensity factor for a typical microcrack. Naturally,
exact microcrack interaction effects on K" (or K;{") depend on exact microcrack geometries
such as number of interacting cracks, relative center locations, relative spacing, relative
orientations, inner-tip or outer-tip, etc. In practice, however. it is not feasible to keep track
of microstructural configuration for each microcrack.

By using (37b). the mode I microcrack stability criterion can be recast as

f=t ray— K = 0. (38)

For computational simplicity, let us assume that the lateral tension ¢* is constant and the
axial tension ¢ is bigger than ¢*. The value of ¢ does nor have to be monotonically increasing
as long as ¢ > g*; i.c. unloading paths are permitted. In particular, from eqns (36) and
(38), we have

“u

e

g = :
\/ Ta, cos®

—g*tan® 0. (39a)

Clearly, the first cracks to become activated are those for which ¢ is a minimum, and are
oricnted in the plane 0 = 0 given the assumption that ¢* < I\"{(A\/mz(,. Therefore, the cor-
responding minimum value of ¢ is

MU
o
\/n“()

The microcrack growth kinetic sequence proceeds as follows. Note that ¢* < ¢,.

g0 =0) = ¢, = (39b)

(a) As ¢ < ¢y, all microcracks are stable and of initial size. Since all microcracks are
open, perfectly randomly oriented and of equal size, the overall response is isotropic.
Though the response is linear and reversible under the present stress level, the material state
is really elustic-damage. In fact, the current elastic-damage compliance § is bigger than the
virgin undamaged elastic compliance S°.

(b) As ¢ = g > ¢*, those microcracks in the plane § = 0 become unstable and increase
their lengths from 2u, to 2¢p. It is assumed that there exists a higher energy barrier in the
matrix so that microcracks become arrested once they reach 2a,.

(c) As ¢ = ¢, > g, microcracks in the angle domain (=6, 6,) become activated and
increase in size from 24, to 2a;. The material behaves anisotropically and the elastic-damage
compliance increases. U, value depends on ¢, ¢, and ¢*. Specifically, in view of egns (38) -
(39b). 0, can be obtained by solving

g, cos* 0, +g*sin* 0, = q,. (40)

Thus, we arrive at

cos 0, = /(qo—4*)/(¢,—¢*) or +0, =cos"' (V/F(f;(:;;’)/(qn —g%).  (4D)

The compliance contributions S¢ and S! in eqn (34) can bc computed (integrated) through
eqns (20a-e) and (21b):
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0y

Sﬂ = %,J' g(k)TSd(k)'(gv af)gtk) do (42)
-8,

R\ = T QdlkY k)

St == g™ 784 (8. a,)g"™ do (43)
+8,

where 1/n is the assumed uniform probability density function of microcrack orientation.
Certainly, other probability density functions may be used when appropriate. For notational
compactness, the integration bounds (—n;2, —#,) and (8,, n/2) are written together in (43)
and in what follows. Readers should interpret the notation (+#8,, +r/2) as the sum of two
integration domains: (—n/2, —8,) and (8. n/2). Note that eqns (42) and (43) are somewhat
at variance with eqn (39) in Sumarac and Krajcinovic (1987) and eqn (55) in Sumarac and
Krajcinovic (1989).

(d) As gy < ¢ < q,. the unloading case ts taking place. There is no further microcrack
growth because the apparent “*active angle fan™ shrinks. Therefore, S¢ = 0. It is emphasized
that the actual “angle fan™ (featuring 2q; size) does not reduce owing to the irreversible
nature of damage. Therefore, the elastic-damage compliance remains its previous value.

(¢) As ¢ > ¢,. more microcricks are activated. The “angle fan™ domain (-0, #) can
be computed from (41), with ¢, replaced by ¢. However, only the microcracks within
domains (—0, —0,) and (0,, 0) are actually experiencing unstable growth. Hence, the
compliance contribution S! should be obtained from (20a-¢) and (21b) with (=0, —0,)
and (6, 0) as integration bounds:

(44

N . ~
Sy = nJ‘ g® S, g™ do). (44)
t

n,

In addition, 8 and 8¢ in (34) now take the form:
[l f

N2 retr =
S = nf g SN0, ay)g™ d (45)
t

]

Sy N (" R rQdtky 7y ky 4
5|.=E g ISYE(0, ap)gt™ do. (46)

-4,

() At some higher stress level ¢ = ¢, K; at 0 = 0 reaches the critical stress intensity
factor K. of the matrix energy barrier. Therefore, microcracks having size 2q; will resume
to propagate through the matrix, and eventually lead to final failure:
-

g, = - (47)
V/T[(lr

As was commented by Sumarac and Krajcinovic (1987), the above scheme implicitly
assumes that ultimate failure prefers “runaway cracks™ in comparison with “localization
modes™. Numerical simulations by using both the self-consistent method and the “Taylor’s
model™ will be given in Scction 4.2,

3.3. Mode I miicrocrack growth

Under uniaxial or biaxial compressive loads, microcracks are closed and primarily
grow in “mode 1™ fashion. Fanclla and Krajcinovic (1988) proposed excellent kinetic
equations for flat penny-shaped interface microcracks in concrete under mode [l growth
by using the “Taylor's model™; i.e. microcrack interaction effects are completely ignored.
Our procedure here basically follows their trcatment. However, the self-consistent method
is employed here and weak microcrack interaction is taken into account through the
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damage-induced stiffness degradation and anisotropy. Mode I microcrack kinking into
brittle matrix is considered in Section 3.4, Further. microcracks under consideration are
line microcracks instead of penny-shaped microcracks. [t is also noted that unloading
reloading ts permitted in our treatment.

In accordance with eqn (35¢). the mixed mode fracture criterion should be used.
Nonetheless. since there is no mode I action under uniaxial or biaxial compressive loads. it
is equivalent to employ the mode Il fracture criterion only. Consequently. K, (or A7i") will
be compared against Kj¢ for a microcrack to determine whether it will propagate or not.
Further, due to frictional sliding of closed microcracks. eqn (22) should be utilized to solve
complex roots of characteristic equations : see Remark 2.2.1.

Let us denote by ¢ and ¢* the axial and lateral compressive stresses, respectively. ¢*
is assumed to be constant and ¢ > ¢*. The normal stress o, and shear stress t, on the face
of a typical microcrack at angle € are (Fanella and Krajcinovic, 1988) :

6, =1y =qcos" 0+g*sin° >0 (48)

- uF = _ RLAT P
T, = Th—ut, = F() [q (I + F(”))q ] (49)

where compression is taken as positive and F(#)) = +sin 0 cos ) —p cos® 0. According to
Coulomb’s law of friction. microcrack surfaces will slide relative to cach other when t, 2 0
is met, Therefore, (49) can be sotved for the upper and lower bounds (+0, and +0,)) of
microcrack orientations for given values of ¢ and ¢*:

L4 1 =4C(C +40)

e § = [2/4(\//11" + 1+ )+ g™, (30)
-1

tun (+0, ) =

where C) = ug* (g ~¢*). Only those microcracks within (0., +0.,) will experience rela-
tive [rictional slip on their faces. Note that if ¢* = 0 (uniaxial compression) or i ¢ — £,
then F(0) = 0and 0, = tan 'y, 0, = n/2. That ts, microcricks within the fan (—tan ' g,
tan ' o) will never slide and therefore will not contribute to 8*.

A microcrack with relative sliding fuces will exhibit mode 1 microcrack growth once
its crack tip stress intensity factor Ky (or A7) reaches the critical value K3 along a weak
plane. Accordingly, the mode H stability criterion can be expressed as

7, = - (51)

From (49) and (51), we can solve for the ¢ value needed to activate unstable mode 11
microcriack growth from 2u, to 24, at a specific orientation 6

Kie ( L )
= ——=+ |1+ -~ Iq* (52)
g F(0) Fo)
As in the previous section, an unstable microcrack propagation will be arrested by the
matrix having a higher critical stress intensity factor Kfj. Again, the first microcracks to
increase in size are those for which ¢ is a minimum. Thus, critical angles +0, for the first
microcrack growth are (Fanella and Krajcinovic, 1988) :

+8, = +tan " (/t+\/f,u_f::[). (53)

The corresponding threshold valuc of ¢, is
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e H
= ——— %+ (! + ~—~--)q". (54)
’ anguf((}o) F(8,)
Therefore, mode I microcrack kinetic sequence is as follows.

{a) As g < ¢.. no microcracks will increase in size. Nevertheless, microcracks oriented
within the “angle fans™ (+0,,. +8,.) will slide.

{b) As ¢ = ¢.. those microcracks in the plane + 68, become unstable and change their
lengths from 2a, to 24,

() As ¢ = ¢, > q,. microcracks within the “angle fans™ ( +8,,. +0,:) become unstable
and grow 2a, to 2a. The sliding “angle fans™ (+6,,, +6,.) also increase. The values of
{+4,. +8,) can be obtained from eqn (52):

L+ 1=4Co(Cr+p)
2C,

tan (+60,,.) = t{ } q=9q (33)

where C; = [[Alc//man] +ug*} {g—g*). Since all microcracks are closed. the “dis-
placement transtormation matrix”™ B* in eqn (14) must be modified. Specifically. 8% and
B'Y} are set to 0, while BYY and BY) are available from eqn (32) in Horii and Nemat-Nasser
(1983) together with eqn (22) in Remark 2.2.1. The inelastic compliance S! attributable to
stable sliding microcracks having initial size 24, can be computed as follows:

‘\‘ [ . et
S:s - . {j‘ g(kusei{&) {{g. ﬂu)gik) d”'*‘j gik)rsdik) (H‘ G‘;}gtk} d({} (5{))

1o, v

Further, S in (34) reads

N
Sy = J g TSR ettt do. (57
n 1

”u\

(d) As ¢, < g < q,. the unloading case occurs. Therefore, SY = 0 and
i f < 4 [ u

NIE B ot N )
Sf = Sila = _ J g* 'S (0, apg™ o, (58)

Uui st

where (0, 44 +0,:00) 18 the previous vange of unstable microcrack growth (assuming
sliding). The domain of sliding microcracks also reduces and the new values of +0,; and
+ i, may be obtained from (50). Hence, it follows that

(3

;\' =Putom . i i .
Sfl - . [JA g(hlsdm (()‘ a")gm d0+f g(k)rsdm (()‘ a(,)g"" dU] R (5())

o £

i

T

e

It is noted that the value of S is smaller than its previous valuc given by (56) because the
sliding domain shrinks. As a consequence, the unloading compliance is smafler than its
previous value.

(¢} As ¢ > ¢,. more microcracks are uctivated. Both new sliding and unstable angle
domains, (+0,,. +0,,) and (+0,,. +0,,). increase. The corresponding S¢! and S¢ +S¢ can
be computed by using (56) and (57). respectively.

3.4, Mixed mode F LI microcrack growth

Under combined tensile and compressive loads, some microcracks are closed while
others are open. In addition. some open microcracks may become closed during loading/
unloading processes. Open microcracks grow in mixed mode fashion whereas closed
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microcracks grow in “mode I manner. The mixed mode fracture criterion given in egn
(335¢) is used to determine microcrack stability. To facilitate numerical analysis, however,
it is further assumed that the cross term (B% + B )KK; in (35¢c) can be neglected.
Accordingly. (35¢) can be recast as (Kanninen and Popelar, 1985):

(5Y. (5 2
l\l(‘ A“C/

where K¢ and K denote critical stress intensity factors of a representative volume.
Nonetheless. since all initial microcracks are assumed to be along weuak planes. it is more

rational to write
A" 2 A” 2
(—L> + (*i> = 1. (60b)
1 I\ll(‘

where K and K¢ are critical stress intensity factors of weak planes. Again, it is emphasized
that eqn (22) should be employed to solve complex roots.

Let us consider a typical combined loading case in which the axial compressive stress
is denoted by ¢ and the lateral tensile stress is denoted by g*. Moreover, ¢* is assumed to
be constant (relatively small) while ¢ is varying from 0 to a certain value. Due to obvious
symmetry of the problem, we will derive formulas only for ¢ within the (0, z/2) domain.
During actual numerical integration of compliance components, however, both positive
and negative # bounds should be included. The stresses g, (=15) and T (=67,) on the lace
of a typical microcrack at angle 0 are

a, =7ty = —qcos’U+qg*sin’0 (61)
Ty = (—¢g—g*)sinfcos ¥ (62)

where tension is taken as positive. The “angle boundary™ separating the domains of open
and closed microcracks can be found by setting g, = 0. Hence, we obtain

tan® 0, = qq*»; 0, = tan ! (\/4)]();). (63)

The upper and lower bounds for open microcracks are 7/2 and 8, respectively.
For closed microcracks (g, < 0), the sliding shear stress reads

=y = — F R :
T, = Ty —puts ) [q+ (l + F(()))q*]’ (64)

where F(0) = sin 0 cos U — p cos® 0. The criterion for microcrack surface-sliding is
1, = —(¢+¢*) sin 0 cos 0+ u(q cos® 0 —¢* sin’ 0) < 0. (65)
The 0-bound can be obtained by sctting t, = 0:
— 1+ /1+4H,(=H,)

tan , = T (66a)

where H, = pug*/(g+4q*). Since we require that 0, > 0, there should exist only one 0,:
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e IR CGTED
9,=tan"< L+J/1+4H, (p—H)) (66b)

2H,

This 8, value is. in fact. the lower angle bounds for closed microcrack sliding. The upper
bound is simply 6, given in (63) since sliding shear stress t, is negative at the 6, plane. Only
those microcracks within (+6,, +6,) will exhibit relative frictional slip on their faces.
Again. it is noted that as ¢* = 0 (uniaxial compression) or as g — 20, then F(#) = 0 and
8. =tan"'u, 6, = n/2. As ¢ increases from 0, 6, and 6, also increase but never exceed
tan” ' u and r 2. respectively.

For closed microcracks. the mixed mode fracture criterion (60b) reduces to the mode
I1 fracture criterion. Therefore. as in the previous section, a sliding microcrack will experi-
ence mode Il microcrack growth once its crack tip stress intensity factor K, reaches the
critical value K7 along a weak plane. Accordingly, mode II stability criterion requires the
following loading level ¢ for a specified 8

i H
q=~—-—~———<l+———>q‘. 67)
 na,F(0) F(9)
The first microcracks to propagate are those for which ¢ is a minimum:

0y =tan~' (u+/u*+1), (68)

where it has been assumed that pg* # K}’|(~/\/;C-;:,. If 03 > 0, (opening/closing boundary),
then set 0 = 0,. The corresponding threshold value of ¢ is

wa o R |+-~"~-> . 69
7 JragFo) ( Fos) )

The mode 1 angle bounds for unstable weak-plane microcrack growth, (81, 0%,), can

be obtained from eqn (67):

L+ /1 —4H (H, + 1) Kie K}
tan 0", = —-\/ H -+l‘)‘ (q+q‘)224[ e _#q,:l[ e +#q}‘

3
24, na, ndy

(70a)

where H, = [[Kb¢ \/}t—u_(,]—uq“'}/(q+q"). If ug* < Kf\c/</ma, (typically), then there are
two roots O} and 0. On the other hand, if ug* > Ki\c/\/ma, (unlikely), then there is only
one root 0! :

=/ 1—8Hy(H,+p) (70b)

tan 0" = 3, .

Note that 0% and 0!} (or simply 0.') should fall within the sliding range (0,. 0,) ; sec Fig. 2
for a schematic plot.

For open microcracks, a mixed mode fracture criterion such as (70b) may be used to
check microcracks stability. For convenience, let us define a = Kyc/Kic. Hence, (60b) can
be rephrased as:

o’ (KD +(Ki)* = Kite. (n

Substitution of (61), (62) into (71) then renders the microcrack stability condition:
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6=0

Fig. 2. An example of domains of mode I microcrack face sliding. unstable microcrack growth and
mited mode unstable microcrack growth. ¢, separates the open region from the closed region.

ol

23 (—qcos’ 0+g*sin’ 0)° +(g+¢*) sin? Ocos® O = —C

. (72)
T,

or, equivalently,

.. K ) , Kiie . .. K
(x‘q" - ) tan® 0+ ((/' +q* —6gq* —2 H ) tan- 0+ (1‘(/' - "‘) =0. (73)
}

T, T, may,

From (73). we can express ¢ in terms of tan 0, ¢*, 2, and K} /ra, [analogous to (67)]. and
solve for threshold values 0F and ¢y’ corresponding to tirst microcracks to increitse in size
from 2a, to 2a, within (0, n/2) domain.

In order to define the unstable “angle domain™ for a given ¢ value, we have to solve
eqn (73). Obviously, (73) is amenable to exact sotutions. Due to the constraint that 0 > 0,
there are at most rwo real solutions to (73): 03 and ,. We recall that the other two
negative U solutions will be accounted for during actual numerical integration of compliance
components. These angle bounds should fall within the (¢, n/2) range. Otherwise, we
should disregard 03, and/or 3. In the event that both roots are feasible, then unstable
open microcrack growth domain is defined by (0}, 003) assuming that ¢* < K‘,’c/\/mu,. If
there is only one feasible root 03 to (73), then the unstable growth domain is defined by
(Up, U') for open microcracks. See Fig. 2 for a schematic representation. Typically,
¢n < ¢4 and there is only one feasible root to (73).

Therefore, the mixed kinetic evolution for open and closed microcracks proceeds as
follows.

(@) As ¢ < qff and ¢ < ¢}, all microcracks are arrested. At the very beginning, ¢ = 0
and ¢* > 0, thus all microcracks are open. As ¢ increuses, some previously open microcricks
become closed. Microcracks oriented within the “angle fans™ (+0,, +0,) will slide and
therefore the overall response is nonlinear. Further, the “stick™ domain increases as ¢
Increases.

(b) As ¢ = ¢} or ¢ = ¢7, those microcracks in the planc + 04 (closed) or + 07 (open)
become unstable and change their lengths from 24, to 24, Note that the mode IT and mixed
mode microcracks growth generally do not initiate at the same time.

() Asq = ¢, > qi or ¢ = q, > ¢7, microcracks within the “‘angle fans™ (£ 0%, +0.\)
or {+07,. +07) become activated. The sliding “angle fans™ (+0,. £0,) also increase. We
refer to (66b), (704, b) and (73) for these load-dependent angle values. For open micro-
cracks, the “displacement transformation matrix™ B*" is given in eqn (14). For closed
microcracks, B is given in Horii and Nemat-Nasser (1983). [t is important to recall that
the resulting S* and S are non-symmetric in nature. The inelastic compliance S attributable
to stable mode 11 sfliding microcracks having initial size 2a, can be computed by
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N :"‘:‘: . = ’
st = ;[}- d g7 (g g 1ot d9+J‘ . gmrsdm (8.ay)g™ d@] (74)

while S2"* due to unstable closed microcracks can be obtained by

N Al )
S‘d” - LJ g(k)TSdtk) (9, a[)glk) d9 (75)

n z 9Ll|

In addition, S!™ attributable to stable mixed mode open microcracks having initial size 2q,
takes the form

o

=00 2
S:im = %[I:J‘ g(k)fsd!kr(g.aﬂ)gth d9+J‘ g(k)Tsd(k)'(o‘ aﬁ)g{k} de:l . (76)

28, 295

while S!™ attributable to unstable open microcracks can be obtained by

N [r%:
ng — ;J g(k)rsd(kl‘(O‘ ar)g(k) do (77)
+HG
I there is only one feasible root to (73), the integration limits in (76) and (77) should be
replaced by (£4)'. +£nr/2) and (£ 0,. +87), respectively.

(d) As q4 < g < q,. the unloading casc occurs and Si"' = S = 0. Further, for sliding
closed microcracks, we have

T
Ly

S = S = f RIS (0, @) do (78)
n

t
[

where (00 . 0% ) are the ofd ranges of mode 11 unstable microcrack growth at the
previous 1oad step. Note that if Y 4 > 04 peu then 015 4 in (78) should be replaced by 0y, .,
since some microcracks now become open and the corresponding compliance contribution
should belong to open (mixed mode) region. The domain of sliding closed microcracks also
reduces and the new values of +0, may be obtained from (66b). Hence, it follows that

21,

N £ . new .
ot = In [ { g IS g g™ d0+J g TSI gy dU]. (79)

St 0

s new

For open microcracks. we have
LLcm
Sim = SIP| g = J TSI (0, ag™ do, (80)
T J.

where (£07, 4. £05% 44) is the old range of mixed mode unstable microcrack growth at the
previous load step. We have assumed that 0, ;4 < Oy pew. The domain of open microcracks
increases and therefore S!™ should be updated:

N T e . £/l .
St’m = [J g(k)rsd(k) (0' ao)g(k) d()+j g(k)rsd(kl (0‘ an)g“" d()} (8‘)
n tthy new £ g
(¢) As ¢ > ¢,. more microcracks are activated. The mode I sliding and unstable angle
domains, (+0,. +0,) and (£0Y,. +0'%). increase. Similarly, the mixed mode unstable angle
domain, (+07. +0%) or (+0,. +67) increases. The corresponding S, [Si" + 8], ¢

and [S!™ + S{™] values can be computed by using (74)-(77). respectively.
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3.4.1. Remark. Mode Il weak-plane (interface) microcracks having the size 2u, are
arrested by higher energy barrier of matrix material. However. if axial compressive stress
is increased to a certain level, these microcracks may kink into brittle matrix in a stable
fashion and eventually align with the axial compressive load direction; see, e.g. Nemat-
Nasser and Horii (1982) and Horii and Nemat-Nasser (1985b, 1986). The kinking threshold
Stress ¢y, can be obtained from [see, e.g. Zaitsev {1982, 1983)];

E (1 - ) (82)

ink = - + == -
Tk = S SraF ) Foy)

The angle bounds for initiation of stable kinked microcracks, (¢,,. 8,-). can be expressed
analogous to (70a) :

1+ /1—4H (H,+ . 3K /3K,
tan b4 = —— 5H (Hy+p) . (g+rgh)- =4 \*/"“:g —uq* .\_..._;"_ +ug
) 2/ na 2y mag

(83)

where H, = {[ﬁKﬁc/Z\/nad—;xq*}/(q+q‘). For u¢* < \/31\’}‘(-/2\,'"/;:(1,«. there are two real
roots. Note that 8,, and 8, should fall within (0!, 8Y,) ; see Fig. 2.

Assuming stahle microcrack kinking, the “kink length™ / can be related to the sliding
shear stress 1, see, e.g. Zaitsev (1983), Horii and Nemat-Nasser (1986) and Fancila and
Krajcinovic (1988). For cementitious composites below the brittle-ductile transition point,
a simple formula may be used (Zaitsev, 1983):

daitl cos® 0
[= 2 (84)
nKi
where 1, 1s available from cqn (64). Finally, the additional compliance contribution Si,,
due to kinked microcracks can be computed by

N ﬁ"u 3 )
S‘:mk = ;rJ‘ gmlsd(“ (0, 1)3(“ d. (85)

t 0,

4. COMPUTATIONAL ALGORITHMS AND NUMERICAL SIMULATIONS

In this section, computational algonthms are given for the proposed self-consistent
damage models. In addition, three detailed numerical simulations are presented. These
include a uniaxial tension test, a uniaxial compression test, and a tension/compression test
of brittle materials. Duc to a luck of plane strain experimental data at this stage, however,
an actual experimental validation is not presented. Extensive experimental verification of
the proposed models should be performed in the future. Nevertheless, the presented numeri-
cal simulations demonstrate the potential capability of the proposed micromechunical
damage modecls to qualitatively explain and model physical behavior of brittle materials,
without resorting to any fitted “material parameter™ commonly utilized in phenom-
enological continuum damage modcls.

4.1. Compuational algorithms

A sclf-consistent kinetic damage model naturally requires iterative schemes to obtain
the yet unknown elastic-damage compliance § corresponding to specified arca-average
stresses & or remote stresses o . As mentioned in Section 2.1, it is assumed that § x 6¢” in
our problems. For mode I, mode [l and mixed mode damage models discussed in Section
3. fortunately, the “sliding angles™ + 8., “"unstable angles™ + 60, and “'kink angles™ + 0, are
independent of the iterative processes in finding compliances S for sequentially applied loads
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g. Therefore, the computational schemes involved in solving the proposed stress-controlled
micromechanical damage models proceed as follows.

(1) For a given load ¢. compute “unstable angles™ + 0, according to (41) for mode I.
(55) for mode II. as well as (70a. b) and (73) for mixed mode. “Sliding angles™ +6, are
computed according to (50) for mode Il and (66b) for mixed mode. In addition, “kink
angles™ +8, are calculated according to (83). The “unstable’” and “kink™ angle domains
should be stored as history variables. They depend on ¢ only. independent of iterative steps
in the following.

(2) Solve S iteratively for a specified load g. The natural initial guess for the current S
is the previous secant compliance S,y At the first loading step. we use the virgin elastic
compliance S” as an initial guess: see also Horii and Nemat-Nasser (1983, p. 168). For
each trial compliance §', we have to solve eqn (22) so that displacement transformation
matrix B, crack opening displacements and inelastic compliance S** can be evaluated.
As noted before. the secant compliance S is in general a non-symmetric matrix when
frictional sliding of microcrack faces is present. Equation (22) is simply a fourth order
algebraic equation and is amenable to a closed-form exact solution. Further, we only need
to solve (22) once (for each trial compliance S') at the orientation plane # = 0. For other
orientations, the local roots 4; can be expressed by the roots 4, at ¢ = 0 (Lekhnitskii, 1950,
p.- St

, _A,cos0—sin 0 ,,__/'.',cos()—sinﬂ %6
1= cos B4 sin 00 M T Gos 04, sin 0 (86
where £, are the complex conjugate roots to 4, Once the roots of (22) in every desired
orientation are obtained from closed-form solutions, B*', S and §'* for cach microcrack
contribution can be obtained from (9a), (14) and (204 -¢) in Scction 2.2, and from egn (32)
in Horii and Nemat-Nasser (1983).

(3) Obtain the damage-induced compliance §* in (21b) by numerical integration.,
Here, we use Simpson’s rule with 201 integration points at various orientations between
(—m/2, 1/2). The compliance contributions Si, S!, S} and Sy, can be computed by using
(42) -(46) lor modce I, (56) -(59) for mode 1, (74) -(81) for mixed mode, and (82)-(835) for
kinked microcracks.

(4) Obtain new trial compliance §”*" by adding S 1o S°. Compare this new triul
compliance §” " with the previous trial §. If the relative error is smaller than a preset
tolerance, then the iterative process is said to be converged. On the other hand, if the relative
error is unacceptable, then use "5 us a new estimate, and go back to Step (2) to re-
iterate until convergence is reached. This iterative procedure leads to superlinear rate of
convergence, and typically requires only 5 to 7 iterations. The convergence criteria we
employ here are based on L, and L, norms. In particular, we check the following
(TOL = 10 %)

|S(")—S'"H’|» |S(n)_S(n+l)|
T =g TOL or "'—l‘g(’;:ﬁr—“i < TOL. (87)

§(no-|)
- 1

If (87) is satisficd, then convergence is reached. Set § = §”* " and go to Step (5).
(5) Apply the next load ¢,... Set converged clastic-damage compliance S in Step (4)
to S, and go to Step (1).

4.2, A uniaxial tension test

A uniaxial tension test is considered in this scction (see also Sumarac and Krajcinovic,
1987). For comparison purpose, the results of the sclf-consistent method are compared
with thosc of Taylor’s model. The virgin material is assumed to be isotropic linear elastic
with Young's modulus £° = 4000 ksi (27600 MPa) and v* = 0.2. Moreover, Kj¢ is taken
as S ksi-in."* (5.5 MN m~* %) and a, = 0.64:.
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Two different initial microcrack area-concentration parameters are considered :
¢y =0.1131 and 0.2262. Recall that by definition (w) = ¥n{u") 4. Although the
maximum allowable value of v 1s 1 for the self-consistent model, actual brittle materials
fail at w less than [. At the beginning (¢ < ¢,) and the asymptotic end (¢ = %) of the
loading sequence, damaged materials are isotropic because microcrack orientations are
perfectly random and microcrack sizes are uniform. Thus, both the self-consistent model
and Taylor's model can be computed analytically for ¢ < ¢, and ¢ = x : see Horii and
Nemat-Nasser (1983). and Sumarac and Krajcinovic (1987). The integration formulas for
Taylor’s model are analogous to the self-consistent model (42)-(46) with S**' replaced by
(plane strain condition) :

2nat(l=v) .
S =v--—i~f({E—f -1(0:,6:,4-0;,0;,); ivj=1.273. (88)

The relative difference in lateral compliances (dotted lines) and axial compliances (solid
lines) between the self-consistent model and Taylor’s model for two values of initial damage
w, are shown in Fig. 3a.b. Notice that the responses of two models are not equivalent even
at ¢, < | due to initial (pre-existing) damage. [t is also noted that as ¢ approaches =
(not feasible), the final microcrack arca-concentration parameters o become 0.3142 and
0.6283, respectively. Further, the relative difference between the self-consistent model and
Taylor's model depends on the degree of mean microcrack arca-concentration {m). Sce
Fig. da.b where the relative difference in compliances between the two models is plotted vs
(). For low damage concentration ({e) smaller than 27%). the relative difference in
compliznees s less than 10% ; see Fig. 4a. For moderate damage ({o) between 27% to
45%), the relative difference ranges from 10% (at ¢'g, x 1.04) to approximately 30% (at
gy = 2.5) see Fig. 4b. Thus, it appears that use of Taylor's model is acceptable for low
damage concentration, in agreement with the finding reported in Sumarac and Krajcinovic
(1987).

Figure Sa.b display normalized stresses versus normalized strains computed by the two
models for the same two values of a1, Again, the relative difference is smaller than 10%
for {w) less than 27%. In addition, the averaged stress-strain behavior is quahtatively
reasonable for the self-consistent damage model. The ratios of §,./S, | versus the normalized
axial stresses ¢/q, are exhibited in Fig. 6a.b. In Fig. 7a.b, the ratios $.,/S,, are plotted
against the microcrack arca-concentration parameter {m).

4.3. Uniaxial compression and biaxial tensionjcompression tests

A uniaxial compression test and a biaxial tension/compression test are considered in
this section. The virgin brittie composite material is assumed to be isotropic linear clastic
with Young's modulus £ = 6000 ksi (41 400 MPa) and " = 0.2. Fracture toughness prop-
ertics of weak plane (interface) and matrix are taken to be Kj. = 0.15 ksi-in." ? (0.165 MN
m ' AN =0.3ksi-in' F(0.33MNm ), and K = 0.525 ksi-in.' F(0.578 MN'm ).
The initial and final microcrack lengths on weak planes are taken as ¢, = 0.375 in. (0.953
cm) and a, = 0.225in. (0.572 ¢cm). The coetlicient of friction on microcrack faces is 0.6. In
addition, ¢* = 0 for the uniaxtal compression test, ¢* = 0.1 ksi (0.69 MPa, tensile) tor the
biaxial test, and w, = 0.2262.

The axial load ¢ is gradually increased from 0 to a certain peak value. For the uniaxial
compression test, all microcracks are closed throughout the loading sequence. By contrast,
for the tension, compression test, a small lateral tension is applied at the very beginning and
all microcracks are initially open. As ¢ increases, more and more microcracks change states
from open to closed. Therefore, for the biaxial tension, compression test, some microcracks
are open and grow in mixed mode, while others are closed and grow in mode 11 fashion
during the loading sequence. After mode I microcracks kink into matrix material, however,
kinked microcracks are considered as “tension cracks™ and aligned with the axial loading
direction. In both tests, kinked microcracks arc assumed to grow in a srable fashion.
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Fig. 3. The ratios of compliances computed by using the self-consistent and Taylor’s models in axial
(solid linc) and lateral (dashed) dircctions vs the normalized stress g/q,. Part (a) is for w, = 0.1131
and (b) for w, = 0.2262.

SAY 77:2-M



248 J.W. Ju

(a)

1.2
1.15 M
ez .
Q
“13
“ 10
8
S
&
1.05
1.0 " F Y 1 i " ' —
0.1 0.15 0.2 0.25 0.3 0.35
w
322s/822¢
--------- slls/sllt
)
1.8
1.6

Ratio S§/S T
-
o

1.2
1.0 — : E—
0.2 0.3 0.4 0.5 0.6 0.7
[0}
822s/822t
......... 3lls/sllt

Fig. 4. The ratios of compliances computed by using the sclf-consistent and Taylor's models in axial
and lateral directions vs the cvolving microcrack concentration parameter w for ar, = 0.1131 (a)
and 0.2262 (b). respectively.



Self-consistent micromechanical damage models

@
12.0 -
10.0
8.0
. |
&
S 60
2 :
= P
= 4.0 } ;
2.0 |
0‘0 A | IS | T i La o o s
0.0 7.0 14.0 21.0 28.0  35.0
Ratio e/eg
e SELF~-CONSISTENT METHOD
--------- TAYLOR’S MODEL
o)
12.0 -
10.0
g.0 ’
(=]
s 6.0
o
- I
‘2
o, 4.0 - g
2.0 |
0.0 P 1 1 J 1
0.0 7.0 14.0 21.0 28.0  35.0

Ratioe/e

SELF-CONSISTENT METHOD
--------- TAYLOR’S MODEL

Fig. 5. Thc normalized stress vs the normalized strain computed by using the sclf-consistent and
Taylor’s modecls for wq = 0.1131 (a) and 0.2262 (b), respectivcly.

249



250 J. W Ju

(a)

1.6 }~
- 1.4 r
Q b
] L
2 L
e 1.2 -
"
o
1.0
L
08 i, i i i A
1.0 3.0 5.0 7.0 9.0 11.0
Raﬁoq/qo
SELF-CONSISTENT METHOD
--------- TAYLOR’S MODEL
(b)
1.8
1.6 -
- 1.4
(%)
&
~
vy
e 1.2
2
o
1.0 o
0.8 ] i b A b
1.0 3.0 5.0 7.0 9.0 11.0
Ratio g/qq

SELF-CONSISTENT METHOD
--------- TAYLOR'S MODEL
Fig. 6. $,/S,, ratio vs the normalized stress computed by using the sell-consistent and Taylor's
modcls for m, = 0.1131 (a) and 0.2262 (b). respectively.



Self-consistent micromechanical damage models

(a}

1.8

Ratio SQQ/S”

SELF-CONSISTENT METHOD
~~~~~~~~~ TAYLOR'S MODEL

(b}

Ratio Sn/S 11

1.2 -

1.0

SELF~CONSISTENT METHOD
--------- TAYLOR’S MODEL

Fig. 7. §,./8,, ratio vs the microcrack concentration purameter w for w, = 0.1131 (a) and 0.2262
(b). respectively.

251



252

1 W o
10
8 N -
Al
A
Al
r \\ >
\
6 o \I -
_ | ',
-~ 4 e vk
s )
)
2 T
.\
"b
O 1 L " } I A . A i T
-1% =-10 =5 0 5 10 15

20 25
STRAINS x 0.0001

a2
el

Fig. 8. The axial stress ¢ vs the axial (¢)) and lateral (¢,) strams for the uniaxial compression test.

The macroscopic axial stress vs the axial (2-direction) and lateral (1-direction) strain
curves are plotted in Fig. 8 for the plune strain wniaxial compression test. The mode 11
microcrack propagation and kinking threshold stresses are found to be gl = 1.27 ksi (8.76
MPa) and gy = 1.48 ksi (10.21 MPa). Figure 9 depicts the “active microcrack area-
concentration™ parameter {w*) (defined as Nnda?)/A) vs the axial load ¢. It is emphasized
that “no-slip” microcracks are excluded from (w*) since they do not contribute to either

strain or secant compliance. Moreover, no-slip and sliding angle fans are fived throughout

1.00

0.12

0.0

q  (ksi)
Fig. 9. The "active microcrack arca-concentration”™ parameter {w*) vs the axial stress ¢ for the
uniaxial compression test.



Self-consistent micromechanical damage models 253

210.0
180.0 F
<~ 1s50.0 |
g !
¥ 1200
2 I
o
o 90.0 F
Q2
k|
g s0.0 F
<
o L
30.0
0.0 : SEcdamasna xzzboorocc
0.12 0.34 0.56 0.78 1.00
<>
s11
------ 522

Fig. 10. §,, and §,; vs {w*) for the uniaxial compression test,

the loading process. That is, 0,; = tan ~' g and 0,; = n/2. As a consequence, {w*) is fixed
before mode 11 microcrack propagation occurs. Figure 10 displays S\, and $,; vs (w*). It
is observed that the lateral compliance component §,, is much larger than the axial
compliance component §,, because of the formation of many kinked microcracks. §,, and
S, vs {w*) are given in Fig. 11. Notice that §,, is larger than $,, due to sliding microcrack
displacements. Furthermore, Fig. 12 exhibits the shear compliance component §; vs (w*).
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Fig. 11. §,;and 8, vs {w*) for the uniaxial compression test.
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For the biaxial tension/compression test, the response is initially isotropic at ¢ = 0 and
¢* = 0.1 ksi (0.69 MPa, a small lateral tension) because all microcracks are initially open
and of uniform size. Later, as ¢ increases, some microcracks become closed and even
become stuck (no-slip). Thus, § and (w*) slightly decrease before mode 1T microcrack
propagation starts. From numerical computation, the mode !l microcrack propagation

threshold stress is found to be ¢f = 0.95 kst (6.56 MPa), the microcrack kinking threshold
stress g = 1.17 ksi (8.07 MPa), and the mixed mode threshold stress ¢ = 1.28 ksi (8.83
MPa). This implies that mode H microcrack growth in closed domain occurs well before
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Fig. 13. The axial stress ¢ vs the axial (¢,) and lateral (&,) strains for the biaxial tension/compression
test.
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Fig. 14, The “active microcrack arca-concentration” parameter {or'y vs the axial stress ¢ for the
biaxial tension, compression test.

mixed mode microcrack growth takes place 1 open domain, Eventually, it is numerically
obscrved that 8 = 8, = 7. The macroscopic axial stress vs the axial and lateral strain
curves are plotted in Fig, 13 Figure 14 shows {0*) vs the axial toad ¢. Figure 15 displays
S, and S,y vs Goty. Again, Sp) is much larger than S,; because of Kinked microcracks.
Sirand Sy, vs (') are shown in Fig. 16, Figure 17 gives the shear compliance component
Siovs Loty Note that S, Syyand S slightly decrease at the beginning duc to the inerease
of “no-slip™ microcrack domain.
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By comparing Fig. 8 with Fig. 13, it is scen that microcrack propagation and kinking
threshold stresses ¢f) and ¢, as well as the peak stress significantly decrease in the presence
of a small lateral tension ¢*. Inaddition, the lateral strain of the biaxial tension/compression
test is higher than that of the uniaxial compression test,

S. CLOSURE

FFollowing the frumework proposed by Krajcinovic and Fanella (1986). the proposed
micromechanical brittle damage models do not require the use of additional fitted “material
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Fig. i7. S11vs <) for the biaxial tension/compression test.
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parameters” other than well-defined elastic constants and fracture toughness of constituent
phases. Thermodynamic basis, effective averaged field equations, microcrack opening dis-
placements and damage-induced inelastic compliance are given within the context of two-
dimensional self-consistent method. It is emphasized that secant compliances are generally
non-symmetric.

Fracture mechanics stability criteria together with microstructural geometry are
employed to characterize microcrack evolutions under mode I. mode I and mixed mode.
Simple and efficient computational algorithms are presented. In addition, three detailed
numerical simulations are given. Finally, it is emphasized that loading;unloading stress
paths and microcrack opening closing status changes are easily accommodated with the
context of the proposed damage models.
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