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Abstract-Two-dimensional self-consistent micromechanical damage models are presented for
microcrack-weakened brittle solids under "c1eavage I" deformation processes. The proposed frame­
work basically follows the previous work of Horii and Nemat-Nasser (1983. J..\1<·ch. Phys. So/i,Lf
JI(~l. 155-171) and Sumarac and Krajcinovic (1987. Mecll. Miller. 6. 39-5~). Thermodynamic
I>asis. microcrack opening displacements and damage-induced inelastic compliances are derived.
\flcH)crack evolutions (growth) arc characterized through the usc of fracture mechanics stal>ility
criteria and microstructural microcrack geometry. Mode I. mode \I and mi.'ed mode microcrack
growth are considered. Simple and etlicient computational algorithms as well as three detailed
numerical simulations arc also presented to illustrate the potential capahility of the prop~)Sed

micromcchanic.d damage models. In particular. no litted "material parameters" are needed. More­
over. loading. unloading stress paths .1I1d microcracks slatus changes III opening, dosing arc trivially
accomnwdalcd in this work.

I. INTROI1l !(,TION

Micromeehanicl1 damage modds for mieroeraek-weakened hrittle solids arc presenled
wilhin lhe contexl of lhe sdf-eonsislenlmelhod and damage mechanics. For simplicity. only
two-di mensional prohlems arc considered. Though phenomenological con lin uum damage
models provide a viahle eonslilulive framework for ellicient moddling of brittle solids (e.g.
concrete. mortar and hrittle composite materials). typicaHy they do nol oller perceptive
descriptions of microstructural microcrack kinetics. Further, use of several fitted "material
parameters" in damage evolution equations only renders vague and averaged information
on underlying microcracking processes at the microscale (Krajcinovic and FancHa, 1986).
Therefore, micromeehanieal damage theories, which incorporate microstructural and mic­
romechanical information into the damage mechanics framework, arc warranted.

For a literature n:view on continuum damage mechanics, sec, e.g. Krajcinovic (1984,
1986). Onil (1985), Ju (1989). On the other h'lIld. micromechanical damage theories
("process modds") arc limited in the current literature. Some valuable examples arc Wu
(19X5). Krajcinovic and Fandla (1986). Sumarac and Krajcinovic (1987, 1989), Fandla
and Krajcinovic (19IHi) and Krajcinovic and Sumarac (19H9). [n addition, micromechanical
"I/OI/-l'rtlCt'.u" damage models (i.e. no microcrack growth) were proposed, for instance, by
Hudiansky and O'Connd (1976), Hoenig (1979), Horii and Nemat-Nasser (19H3) and
Kachanov (1987) for slali(' slahl(' microcracks. Some single crack stress and crack opening
displacement analyses (houndary-value problems) were proposed by, for instance. Willis
(1978), Sneddon and Lowengrub (1969), Hoenig (1978, 1(82) and Mura (1982). Moreover,
certain valuahle 1/01/-1"0('('.1'.\', strong microcrack interaction analyses (not quite damage
constitutive theories) were proposed. e.g. by Horii and Nemat-Nasser (1985a), Chudnovsky
('/ al. (198741, b) and Kachanov (1987).

An outline of this paper is as follows. Two-dimensional microcrack opening dis­
placements. effective overall (secant) compliance moduli and thermodynamic basis are
given in Section 2 for initially linear elastic (isotropic or anisotropic) brittle solids within
the context of the sclf-consistent method. [t is assumed that distributed microcrack con­
centration justifies the usc of effective continuum medium theory. The microdefects are
considered as line microcracks and microcrack interaction is assumed to be weak. or at
most. moderate. Thus, effects of strong microcrack interaction and exact locations of
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microcrack centers are not accounted for in this part:r (see Kachanov. 19X7). Localization
failure modt:s are not considered. eitht:r. [n Scction 3. modt: I. modt: II and mixcd nll'dc
discrete microcrack kinetic equations are examined based on microstructural microl"f:l(k
geometry and fracture mechanics stability criteria for brittle "clt:avagt: I" deformatil1O
processes (Ashby. 1979: Sumarac and Krajcinovic. 19X7). :\0 phenomt:nok)gical (titted)
"material parameters" are used in kinetic equations of microcral:k growth. Further. loading
unloading stress paths are permitted. and microcrack status changt:s from opening to ckbing
(or vice versa) are trivially accommodated. [n Section 4. we prest:nt etlicit:nt computational
algorithms for the proposed micromechanical damage modds. Modt: I. mode [I. and mi.\ed
mode numerical simulations are also presented in Section 4.

2. BASIC FRAMEWORK OF SELF·CO:--SISTE:-';T ELASTIC-DAMAGE :\IODELS

In this section. we present thermodynamic basis of damagt: mt:chanics. derivt: and
summarize symmetric or f/of/-symmetric "displacement transformation matrices" B' and
anisotropic overall (secant) elastic-damage compliance moduli S for brittk materials. The
matrix material is assumed to be perfectly linear elastic.

2.1. ThcrmoiZrnamic hasis
[t has been shown [sec. e.g. Simo and Ju (19X7). Ju (19S9)! that there e.\ists a Ol/C-{O­

Of/C correspondence between the fourth-order dastil:-damage st:cant complianct: tensor S
and the fourth-order anisotropic damage tensor f) (signifying volumc average microcrack
density. sizes. orientations and opening.c1osing status). Thercfore. it is rational to treat thc
st:cant compliance S(f» itsclfas the anisotropic damage variable. Within thc framcwork or
the homogenization concept for inhomogeneous elli:ctivc continuum mcdium. let us dcline
the homogenized (volumc-averagc) complementary fn:c energy function as (sce also Kr:ljci­
novic and Sumarae. 19X1»)

( I)

where iT is the l'o/ume-iIl'ert'.ije stress tensor (Ilill. 1%5). By the Clausius Duhcm inequality
for isothamal process. we have (with ii dcnoting the vulume-average strain)

(2)

where [according to (1)1

. ~ r- - ,_.:.. ­
X. = iT:~:iT+ ~iT:S:iT.

The standard eokman's method thcn kads to thc following macroscopic stn:ss strain law
and the damage dissipative inequality:

ii = S: iT

1- S.., - (I
~iT :, : iT ~ .

(4a)

(4b)

From eqn (4b). it is observed that the evolution S plays an essential role in rnicrocrack
energy dissipation and evolutions (i.e. "process models"). During a damage /oadil/.Cf process
(in which some microcracks increase their lengths). the total strain tensor r. is amenabk to
an additive decomposition: ii = r.c+r.". with i:c and r.d dl.:noting the elastic and inelastic
(damage-induced) strains. respectively. It is assumed that i:d

:::: () upon complete unloading:
that is, the residual strain at zero stress is negligihle for hrittle matcrials. The elastic-damage
secant compliance tcnsor is also suitable for an additive dl.:composition : S = s" + Sd. with
So and S" denoting the virgin undamaged dastic compliance and the damage-inducl.:d
additional compliance. respectively [sec. e.g. M ura ( 19X~). Horii and Nl.:mat-Nasscr (19X3 )].
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It is emphasized that once a material contains distributed microcracks. the material
bt'Comes inelastic due to its load-path dependency. There are different stress-strain curves
corresponding to different load paths leading to same final stress state. Under some loading,
unloading paths within the context of "non-process models". a damaged material may
exhibit linear and reversible response within a limited range. However. one should not
regard the damaged material as a perfectly elastic one. For example. when damage state fi
is fixed (i.e. no microcracks increase their sizes or change opening/closing status) and no
frictional slip occurs. the overall response remains linear and reversible and therefore we
have i = (~X NI and S = t~X:(~it~ (symmetric). Neverthc:less. this is not true when damage
state is not fixed or when frictional slip is taking place. In addition. the differentiation
of Ha) renders elastic-damage tangent compliance tensor Sung under damage loading
condition:

(5)

From (5). it is clear that in general. S,ang #= S.
Assuming moderate microcrack concentmtion and microcmcks being away from the

representative volume bound.tries. we have it ~ (f' • where (f' signifies the remotely applied
stress Held around the representative volume boundaries (Hill. 1965). Therefore. the
microcrack-induced inelastic strain may be approximately expressed as (Vakulcnko and
Kachanov. 1'>71; Kachanov. 1980; Horii and Nemat-Nasser. 1(83)

I [Of J'41Cd = .,.I (h(8)n+n(8)h)d,')·.
• f 4 _ S

(6)

where V is the representative volume. L is a summation operator over all active (open or
sliding) micrm:ral.:ks. h denotes the craek opening displacement vedor. and n signilies the
normal vector associated with b. For two-dimensional line mil.:rol.:ral.:ks. eqn (6) I.:an be
rephrased as (with A denoting the surface area of the representative volullle):

I [1 J'l,'ii,l = .,. I (b (8) n + n (8) b) dl
•• / 4 I

(7)

As was pointed out by Krajdnovic (1985). the alternative definition of the d.lmage
variable in terms of Cd in (6) or (7) is thermodynamically incorrect. The reason is obvious
.IS follows. During-"mode I" clastic unloading. b decreases and the damage variable [defined
by eqn (6) or (7») changes its state. thus leading to energy dissipation even under "mode
'" clastic unloading. Therefore. although eLl'l (6) is an acceptable measure of the damage­
induced inelastic deformation. it is not a good choice for .Inisotropic damage variabk. The
derivation of appropriate "thermodynamic force" conjugate to the "rate of change of the
microcrack density" will be given in the next section.

2.2. E/astic-dIlf1lC'.lJc SCC/1l1t complial/cc

In a two-dimensional setting (e.g. plane strain). e4n (4a) c.ln be rewritten using Voigt's
notation [sec e4n (22) in Horii and Nemat-Nasser (1983)1

(8)

where ('I = Ell. i;~ = i:zz• i°.l = 2E,> !I = iT ll • !z = iT~z. !.l = iTl~' and S is a three by three
clastic-damage secnnt compliance matrix. For 0I'CI/ microcracks. the secant compliance is
in fact the 1I1/10ac/illg compliance. Therefore. the secant compliance S is symmctric (though
anisotropic) according to Section 2.1. In the case of mode II frictional sliding on doscd
microcrack faces. by contrast. the clastic-damage secant compliance S is flOflSY"1l11ctric
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Fig. I. The local (primed) and global Cartcsian coordinatc systcms.

(5" # 5,,) during either loading or unloading processes. rn addition. coordinate trans­
formation matrices g and g' relating the secant compliance matrices Sand S' (in global and
local Cartesian coordinate systems. respectively) are available from eqn (24) in Horii and
Nemat-Nasser (1983) :

~5;, = .If:,,,lI;,,S,,,,, : ~5" = ll",r.tltl'S;,,,, (9a)

cos ~ II si n ~ II ~si n 211

]
cos ~ II sin ~ II ,;n 211 ]

[g'l e [ <;n'lI cos: II -lsin20 [gl == sin~ 0 cos ~ II -sin20 .(90)

- sin 20 si n 20 cos 20 _- jsin 20 jsin 211 cos 20 .

II is remarked that the "(ocal" (primed) coordinate system is the intrinsic coordinate system
associated with a particular microcrack such that the y'-axis is parallel to the microcrack
unit normal vector fl, see !-'ig. I. Within the context of the self-consistent method, it remains
to determine the crack (lpening displacement h' across an isolated line-microcrack embedded
into an "equivalent" two-dimensional anisotropic homogeneous elastic solid. !-'irst. from
the geometric compatioility condition. we obtain

i: ~ ("'; I

i)y/~
( (0)

For an (/pell microcrack. substitution of (8) into (10) then yields (Lekhnitskii. 1950)

where C is a proper stress function. The characteristic equation of (II) takes the form:

( 12)

Ofcourse. the clastic-damage secant compliance moduli 5;, are as yet IIl/kllOlI"n in accord,lnce
with the self-consistent method. According to Lekhnitskii (1950) and Sih et al. (1965). the
displacement jump across an (kth) open microcnlck (under mode [ or mixed [irr mode) in
an anisotropic homogeneous clastic solid can be expressed as:

(13a)

( 13b)
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where ;,; = r;+ is; (j = I. 2). with S'I' s; > O. are the roots of the characteristic equation (12).
Equation (12) is a fourth-order equation and can be solved analytically. Further. let us
define the two by two "displacement transformation matrix" B'k' as:

( 14)

so that (13a.b) may be recast as

b1h - "J Ik)~ '~B'k"-'
I - - a -x 'I (J~i' ( 15)

From eqn (14). it appears that B'u is a non-symmetric matrix since the off-diagonal
components If,kr and B'N may not always be equal: see also eqns (14)-( 15) in Sumarac
and Krajcinovic (1989). This observation. however. is incorrect since it can be proved that
B1tr = lfN is guaranteed for an open microcrack. To see this. we note that

r;~+s;~ = V, +is',)(r'I-is',) = ;:,;:,

r:~+s:~ = (r':+is'J(r'~-is'~) = ;';;':1'

( 16a)

(16b)

where ;:, and ;.~ are two complex roots of (12) conjugate to the roots ;:, and ).':. respectively.
Since ;:" ;:~. ;:, and ;':1 are the roots of (12), they must satisfy

( 17)

Thaefore. we arrive at

(I ~)

( (9)

Hence. 8\kr = JJ'~ki and fII" is always symmetric for an opcn microcrack. For a du.H,d
microcrack UIH.h:r mode II frictiunal sliding. eqns (l3a,b) and (14) must be appropriately
modified; sec Horii and Nemat-Nasscr (Il)!O. p. 162) for an approximate treatment. Essen­
tially. one m~IY set B'N = Bin = h~') = O. amI replace i1;1 and i1'11 by i1'11 - i1~2 and
i1'~, + II sgn «(T'~ d(T~> respectively. Here, II is the coetlicient of friction. and i1~1 is the com­
pressive normal stn:ss transmitted across the closed crack [see eqn (28) in Horii and Nemat­
Nasser (1983)). Further. the matrix 8'k l is non-symmetric as a direct consequence of
frictional slip.

Using the fact that n', = 0 and eqns (7). (8) and (13a,b). we arrive at

(20a)

(20b)

(20c)

S ilk"
~ .1

ttaO" 1 ,= B1k )
A 11'

(20d)

(20e)
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whae s,',") denotes the kth microcrack-induced "additional inelastic compliance". From
eqns COd. el. it is realized that ~I;' = s{'~' for an open microcrack. By contrast.
S!':' = S~';' = 0 and ~';' # s{'{' for a closed sliding microcrack [see eqn (32) in Horii
and :"emat-:\asser (19S3)]. Thus. 5"'A' is srmmetric and non-symmetric. respectively. for
an open and a closedmicrocrack. In addition. the inelastic compliance SJ due to an ensemble
of microcracks within a representative volume can he expressed as

nJ _ '\ lA' 1"SII" = '\' nJ.'ll = ,\'< nJ,'<')'
J II - ..;""".9ml 9", 11m L ..)// J .. ,, (2Ia)

in which ;V signifks the total number of active (open or sliding) microcracks per repre­
sentative-volume surface. and (.) represents the expected value. In the limit (a large
number of microcracks per representative volume). the summation operator can be replaced
by the integral operator over all active microcracks:

(21 b)

whae fI(lI. a) is a jllint probability density function of orientation and crack size. and n is
the domain of all active microcracks. It is emphasized that Sd depends on the yet IIIlk"OIl'1/

elastic-damage secant compliance 5. Consequently. the self-consistent method demands
ill:rative schemes to solve strains and compliances. Since r. = E' + rod. the clastic-damage
sec;lnl compliance takes the form: 5 = S" + S"(5).

2.2.1. Refllark. For mode II frictional sliding. secant compliance moduli are non-sym­
metric ;IIHI hence eqns (II) (12) slHluld not be used. Instead. acwrding to (X) and (10).
one should use the following equation to solve complex roots:

That is. eqn (22) should be utilized in wnjunction with eqns (20a e) for open microcracks.
and lllgelher with eqn (32) in Horii and Nemal-Nasser (llJX3) for closed microcracks,
respectively. To carry out the self-consistent scheme, a general non-symmetric anisotropic
matrix itaation algorithm is warranted. In addition, numerical integration scheme for (21 b)
is neelled. These issues will be addressed in Section 4.

Moreover, the "thermodynamic force" conjugale to the "rale of change of the micro­
crack density" can be derived straightforwards. Let us define

or
nd" ~

'i"'A' = S7,'(''" - A (23)

where i, .i = I. 2. 3. In the spirit of thermodynamics, we may consider statistical area­
average damage by treating alAi and n l

" as random variables (not necessarily perfectly
random): see also Wu (19X5). Therefore. the area-average values may be replaced by their
appropriate ('x{'('ctcd values. Hence. we have

/ ndkl~ )
(S) = S"+(S") = S"+N\ AS"") = S"+(UP'S"lkl), (24)

in which It/" ;: Nna"'~/A: i.e. the non-dimensional microcrack area-concentration par­
ameter per unit surface (sec Budiansky and O'Connell. IlJ76). The time daivative of (24)
then yields (see also Wu, 19X5)
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(25)

Note that (0«) in general includes both effects of initiation of new microcracks (.V) and
groll"th of existing microcracks (ti). From (25). we obtain

(26)

where I is the fourth-order identity tensor. Substitution of (26) into the damage dissipation
inequality (4b) then leads to

(27)

where iT is now a vector of three components (r I. r!. r) for a two-dimension case. From
(27). it is observed that the "thermodynamic driving forcc" ~ conjugatc to the ratc ofchange
of the microcrack arca-concentration parameter (up') is simply

(28)

The abovc result is at variance with that given in Wu (1985. eqn (38). i.e. ~ == !iT: (S·(kl) : iT).
The latter work. although interesting and valuable. indeed misses some terms in (28) and
hence results in some anomalies regarding thermodynamic "strain energy release ratc
density" ~. For example. ~ given in WU (1985) may tI£'Crease while! incrcases. thus predicting
no further damage in the post-peak (softening) branch of the macroscopic stress-strain
curve.

2.2.2. Remark. In the case of three-dimensional isotropic scalar damage. the damage
tensor () reduces to a scalar variable c/. By dc!inition. the scalar damage variable tI is the
microcrack volume-concentration parameter (lJpl) == (Na'kl)j V). Therefore. we have (for
three-dimensional elastic-damage) :

IS = ~ S"·
(I - c/) •

Analogous to (24). we can identify that

c/S" = - .~_ So.
(I - tI)

(29)

Therefore, ~ defined in Wu (1985) renders

~ = !iT: (S) : iT = !iT: £,

while ~ given by (28) leads to

. _ I _ iT:£
• - 1(J' (S) . (J - I
" -! . (l-=dl" . -! (I - tI) .

(30)

(31 )

(32)

However, iT/( I - tI) is prcciscly the so-called "cffcctive stress" iT (Kachanov. 1958). Denoting
the undamaged virgin elastic stiffness by Co, we then arrivc at
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where lJI"(£ l is the undamaged strain energy density defined in Ju ( 1989) .

.1 \1l(ROCR.-\CK EVOLUTIO:\ EQUATlO:\S

It is likely that brittle materials (such as concrete. crystuls. polycrystalline ceramics.
etc.) have initiul microcracks along some weak planes (e.g. the aggregate-eement interface
in concrete) even before specimens are first loaded. Before the initial (existing) microcracks
are arrested by some higher energy barriers (such as the cement paste in normal strength
concrete). they propagate upproximately along the same weak planes in a self-similar
manner. The problem can be significantly simplified by assuming that activated initial
microcracks grow to certain characteristic jil/a/ lengths along weak planes (Zaitsev. 1983;
Krajcinovic and Fanella. 1986). For example. initial microcracks on aggregate-cement
interface planes of concrete may grow from lao (initial crack kngth) to 2(/1' (the aggregate
facet size) in an unstable manner. Inevitably, there is randomness in initial and tinal
microcrack lengths, orientations and I.:enter locations in brittle materials. As a consequence
of the two-stage approximation of weak-plane microcrack lengths (either 2(/0 or 2(/1'). the
problem of keeping track of \veak-plane microcrack growth in a representative volume
reduces to a series of microcrack stability cheds. Thus. classical fracture mechanics stahility
criteria can he used as tools to determine whether an initial microcrack will be actira/et!.

This procedure. nonethcles,>. C({l/1l1lt accollllllodate nucleation or new microcracks along
dilkn:nt weak plane'>.

;\ microcrad kinetic algorithm hased on fractun; criteria (sec. e.g. Krajcinovic and
Fanella. \,)X7) is inlrinsicly .I'tress-col/trol/et!. This type of mechanism. however. can only
depict the ascending portion of a macroscllpic stress strain curve. not the descending
("sortening") portion. Before a "point" on a stress strain curve reaches the peak. a stress­
I.:ontrolled loading criterion is qualitatively equivalent to a strain-controlb.l one. In the
"softening" hranch. however, a stress-controlled loading criterion will not sullice since tht.:
stress kwl is t!ee/'('({sill!/. In fa.:!. in tht.: dt.:scending branch of a stn;ss strain curve, ther.:
must bt.: signilic~lIlt numha of lllicrocrad lIue/e({tiol/s. and ht.:n.:t.: tht.: "deav~lge I" prol.:ess
assumption is no longer valid. These and related issues should be further investigated in
the future.

Restricting our atlenlilln to the "deavage I" deformation prol.:esses in this work, we
consider the following thr.:e types of damage modes under hioxiu/ loadings: (I) mode I
(open) miaocrack growth only. (2) mode II (closed) microcrack growth only. and (3)

mixed modes I and ([ (open 'closed) microcrack growth. In partil.:tdar. excellent mode I
tensile damage kinetic equations were presented by Krajcinovi\.; and Fanella (19X6) and
Sumara.: and Krajcinovic (llJX7), whert.:as valuablt.: mode ([ comprt.:ssive damage kinetic
equatilllls wen: proposed hy Fandla and Krajcinovic (!lJXX). Their presentations were.
nonetheless, restricted to mOlltollicully il/acusiJlff loading cases. Therefore. no unloading;'
reloading stress paths or microcrack opening/dosing dli.:cts were permitted in their
presentations. The restriction on status change from opening to dosing (or vice versa) can
be removed by checking the S((fll of individual lo.:al lIormu/ stress. The corresponding
symmetric or non-symmetric damage-imluct.:d inelastic compli~lnce components can be
obtained from eqns (20ae) for open microcracks. and from eqn (32) in Horii and Nemat­
Nasser (1983) for c/osed microcracks. It is remarked that in general cqn (22) should be
used to solve complex roots. On the other hand, the restriction on "monotonically increasing
loads" can be removed by .:omputing and checking whether there 'Ire 1/f/(/crffoill.'/microcrack
growth (excluding those previously propagating and cum;ntly arrested microcracks). If
there is no "angle fan" domain in which "dditillllo/ microcrack growth is 110W taking place.
then the current incremental load step is in an IIl/lout!illff state. Therefore. "active microcrack
gro\vth" is the valid current loading condition, regardless of prior existencc (or nOI1­
existence) of certain "angle fans" where microcracks previously experienced growth.

Accordingly. the additional inelastic compliance Sd takes the form:
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(34)

where S~ denotes the compliance contribution from undergoing microcrack growth. S~

signifies the contribution from arrested microcracks having initial sizes 2a~kl. and S~ rep­
resents the contribution from arrested microcracks having.final sizes 2al·kl due to prerious
microcrack growth. In particular. if S~ = O. then the current load level is not high enough
to cause further damage and therefore all existing microcracks are arrested. Finally. S<.I is
added to So to obtain the secant compliance S. In what follows. for computational simplicity.
it is assumed that all initial and final microcracks are of uniform sizes 2ao and 2ar. respec­
tively. For non-uniform initial microcrack sizes. we refer to Krajcinovic and Fanella (1986).
Microcrack kinking will be addressed in Section 3.3.

3.1.1. Remark. If all microcracks are open and arrested with non-uniform sizes. then
overall loading and unloading responses are linear and reversible (but not perfectly elastic).
By contrast. if some microcracks propagate. then the loading response is nonlinear. More­
over. in mode II or mixed mode 1,11 with friction. some microcracks may be open and some
closed. Therefore. the resulting loading and unloading responses are nonlinear for either
"process models" or "non-process models".

3.1.2. Remark. In the case of mixed mode I, II. the strain energy release rate G' for a
microcrack aklllg a weak plane should indude ooth mode ( contribution G'l and mode"
contrihution G':. In terms of secant compliance. G' may he expressed as (Sih e( al.. 1965;
Rice. ]lJ75; Sumarac and Krajcinovic. IlJXIJj:

Therefore. we have

1['1'.,
[C 4 '1=.., :-

- 1/ I ~

(35a)

(35b)

(35c)

It is noted that K, and K;I represent the mode I and" stress intensity factors at a particular
orienl~tliun, respectively. The expressions fl)r 8',;' arc given in eqn (14) for an open micro­
crack, and in Horii and Nemat- Nasser (1983) for a closed microcrack. The computed G'
value is then compared against a given mixed mode critical strain energy release rate G,.
to determine whether a microcrack will propagate.

3.2. Mode' microcrack .t!'OIl'tIJ

Undcr uniaxial or biaxial tensile loads. microcracks primarily grow in "mode ("
fashion, Let us define the (glohaL homogenized) axial tensile stress by t1 = q and the lateral
tensile stress by t I = q*. respectively. The normal stress t'1 on the face ofa typical microcrack
~It angle V then reads

(36)

According to eqn (35c). one should compute K;. K" and G' even in the case of
uniaxial or biaxial tension. However. since "mode I" is the primary concern (Sumarac and
Kr"jcinovic. 1987). it is computation"lly simpler to usc the mode I fracture criterion. In
addition. strictly speaking. the "stress intensity factor" used in the microcrack growth
stability criterion should take into ~Iccount direct microcrack interaction effects:

(37a)

where Kl'dT is the mode I eOi.'clil'e stress intensity factor. and K~c is the mode ( critical stress
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intensity factor for a weak plane. We refer to Horii and Nemat-Nasser (l985a) and
Kachanov (1987) for the derivation of K;eff and K1't ff for line microcracks under various
geometric configurations. Alternatively, within the applicable range (moderate microcrack
concentration) of the self-consistent method, one may employ the simple "single crack"
stability criterion (Krajcinovic and Fanella. 1986):

f= K; -Kl'c = 0 (37b)

where K( =f;~ is the mode [ stress intensity factor for a typical microcrack. Naturally.
exact microcrack interaction effects on K;ctT (or K,'t lT

) depend on exact microcrack geometries
such as number of interacting cracks. relative center locations. relative spacing. relative
orientations. inner-tip or outer-tip. etc. [n practice. however. it is not feasible to keep track
of microstructural configuration for each microcrack.

By using (37b). the mode I microcrack stability criterion can be recast as

f = f; ,/rrao - K,c = O. (38)

For computational simplicity. let us assume that the I.Heral tension q* is constant and the
axial tension q is bigger than q*. The value of q docs not have to be monotonically increasing
as long as q > q*; i.e. unloading paths are permitted. [n particular. from eqns (36) and
(38). we have

,-"
"I('

q = , -q* tan Z 0,
j nau cos' 0

(39a)

Clearly. the first cracks to become activated 'lfe those for whil:h q is a minimum. and arc
oriented in the plane 0 = 0 given the assumption that c(" < K;~.JnClu. Therefore. the cor·
responding minimum value of q is

,-"
" 1('q(O = 0) == qu = -

jnClu
(3%)

The microcrack growth kinetic sequence proceeds as follows. Note that q* < qu.

(a) As q < qu. all microcracks arc stable and of initial size. Since all microcracks arc
open. perfectly randomly oriented and of el{ual size. the overall response is isotropic.
Though the response is linear and reversible under the present stress level, the material state
is Willy ela.\'tic-damage, In fact, the current elastic-damage compliance S is bigger than the
virgin undamaged elastic compliance S".

(b) As q = qu > q*, those microcracks in the plane (} = 0 become unstable and increase
their lengths from 2uu to 2a[. It is assumed that there exists a higher energy barrier in the
matrix so that microcracks become arrested once they reach 2£11"

(c) As q == ql > qu. microcracks in the 'lOgle domain (-0 1.0 1) become activated and
increase in size from 2uu to 2a[. The material behaves anisotropically and the elastic-damage
compliance increases. 0 1value depends on 'II, qu and q*. Specifically. in view ofel{ns (38)­
(39b). (} I can be obtained by solving

(40)

Thus. we arrive at

(41 )

The compliance contributions S~ and S:l in eqo (34) can be computed (integrated) through
eqns (20a-e) and (2Ib):
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(42)

(43)

where lin is the assumed uniform probability density function of microcrack orientation.
Certainly. other probability density functions may be used when appropriate. For notational
compactness. the integration bounds ( -n/2. - 9 ,) and (9\. n/2) are written together in (43)
and in what follows. Readers should interpret the notation ( ±9 \. ±n/2) as the sum of two
integration domains: ( -n/2. - 9 \) and (9\. n/2). Note that eqns (42) and (43) are somewhat
at variance with eqn (39) in Sumarac and Krajcinovic (1987) and eqn (55) in Sumarac and
Krajcinovic (1989).

(d) As qo < q < qt. the unloading case is taking place. There is no further microcrack
growth because the apparent "active angle fan" shrinks. Therefore. S~ = O. It is emphasized
that the actual "angle fan" (featuring 2ar size) docs not reduce owing to the irrelwsihle
nature of damage. Therefore. the clastic-damage compliance remains its previous value.

(e) As q > q,. more microcracks are activated. The "angle fan" domain (-0.0) can
be computed from (41). with q, replaced by q. However. only the microcracks within
domains (-0. -0\) and (0,. 0) are actually experiencing llflstahle growth. Hence. the
compli'lOce contrihution S:~ should be obtained from (20a-e) and (2Ib) with (-0. -( 1)

and (0,. 0) as integration bounds:

(44)

In addition. S:' and S;' in (34) now takl.: the form:

, N f" 1 4 /. J 4· - 4-Sf =- gl I S I I (U. (/dg' , dO.
n -1/ 1

(45)

(46)

(I") At some higher stress It:vcl il = q,. K. at (} = 0 reaches the critical stress intensity
factor Klc of the matrix energy barrier. Therefore. microcracks having size 2(/r will resume
to propagate through the matrix. and eventually lead to final failure:

(47)

As was commented by Sumarac and Krajcinovic (1987). the above scheme implicitly
assumes that ultimate failure prefers "runaway cracks" in comparison with "Iocalization
modes". Numeric.1I simulations by using both the self-consistent method and the "Taylor's
model" will be given in Section 4.2.

3.3. A!ode II microertlck growth
Under uniaxial or biaxial compressit"e loads. microcracks arc closed and primarily

grow in "mode 1[" fashion. Fanella and Krajcinovic (1988) proposed excellent kinetic
equations for flat penny-shaped interface microcracks in concrete under mode I[ growth
by using the "Taylor's model" ; i.e. microcrack interaction elTects are completely ignored.
Our procedure here basically follows their treatment. However. the self-consistent method
is employed here and weak microcrack interaction is taken into account through the
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damage-induced stiffness degradation and anisotropy. Mode II microcrack kinking into
brittle matrix is considered in Section 3.4. Further. microcracks under consideration are
line microcracks instead of penny-shaped microcracks. It is also noted that unloading
reloading is permitted in our treatment.

In accordance with eqn (35c). the mixed mode fracture criterion should be used.
Nonetheless. since there is no mode I action under uniaxial or biaxial compressive loads. it
is equivalent to employ the mode II fracture criterion only. Consequently. K1, (or K;r (1

) will
be compared against Ki',c for a microcrack to determine whether it will propagate or not.
Further. due to frictional sliding of closed microcracks. eqn (22) should be utilized to solve
complex roots of characteristic equations: see Remark 2.2.1.

Let us denote by q and q. the axial and lateral compressive stresses. respectively. q.
is assumed to be constant and q > q•. The normal stress an and shear stress r n on the face
ofa typical microcrack at angle 0 are (Fanella and Krajcinovic. 1988):

r, == {,-tti'! == F(O) [q- (I + Aii))q·J.

("'8)

(49)

where compression is taken as positive and F(O) == ± sin 0 cos 0 - tl cos! O. According to
Coulomh's law of friction. microcrack surfaces will slide relative to each other when r, ? 0
is met. Therefore. (49) can he s(llved for the upper and lower hounds (± O,! and ± O.t) of
microcrack oriel/tatiol/s for given values of q and II· :

where C t == tilt''' (i' - if·). Ollly those microcracks within (± O,t. ±O,J will experience rela­
tive frictional slip on their faces. Note that if II· == 0 (uniaxial cOlllpn.:ssion) or if if -> f .•

then F(O) == 0 and 0,1 = tan I II. O.! == rr./"2. That is. microcracks within the fan (- tan I II.

tan I ttl will never slide and therefore will not contribute to S".
A microcrack with relative sliding faces will e.xhibit mode I I microcrack growth once

its crack tip stress intensity factor K;, (or K;"r) reaches the critical value K,'I(' along a weak
plane. Accordingly. the mode II stahility criterion can he expressed as

(51 )

From ("'9) and (51). we can solve for the if value needed to activate unstable mode II
microcrack growth from "lao to 2al at a specilic orientation IJ:

(52)

As in the previous section. an unstable microcrack propagation will be arrested by the
matrix having a higher critical stress intensity factor K,',c. Again. the first microcracks to
increase in size arc those for which q is a minimum. Thus. critical angles ± (Jo for the first
microcrack growth arc (Fanella and Krajcinovic. 1988):

r-.,------
±() 0 = ± ta n ~ t (tl +,,/ W + I ).

The corresponding threshold value of C/o is

(53)
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(54)

Therefore. mode II microcrack kinetic sequence is as follows.

(a) As 'I < 'I". no microcracks will increase in size. Nevertheless. microcracks oriented
within the "angle fans" ( ±O,!, ±0d will slide.

(b) As 'I = 'I,,, those microcracks in the plane ± 011 become unstable and change their
lengths from 1an to 1a,.

(c) As 'I == ql > qo. microcracks within the "angle fans" (± 0ul' ±0d become unstable
and grow 2an to 1ar. The sliding "angle fans" (±O,I' ted also increase. The values of
(±0ul' ±Ov:) can be obtained from eqn (52) ;

(55)

where C: == aK;'KI.../~alll+Jtq·:;{q-q·). Since all microcracks are dosed. the "dis­
placement transformation matrix" Bikl in eqn (14) must be modified. Specifically. B'tr and
B~~l are set to O. while B'n and B\"i are available from eqn (32) in Horii and Nemat-Nasser
(1983) together with eqn (22) in Remark 2.2.1. The inelastic compliance S:' attributable to
stable slit/illY microcracks having initial size 2a ll can be computed as follows;

Further. S~: in (.14) reads

(57)

(d) As 'I" < 'I < If,. the /llIlom/iIlY case occurs. Therefore, S~ = 0 and

(58)

where (± (i"I."ld' ±Ou:."ld) is the pr('/'io/ls range of unstable microcrack growth (assuming
sliding). The domain of sliding microcracks also reduces and the 1It'11' valucs of ± 0,1 and
±0,; may be obtained from (50). Hence. it follows that

(59)

It is noted that thc valuc of S~ is smaller than its previous value given by (56) because the
sliding domain shrinks. As a consequcncc, the unlmlding compliance is smaller than its
previous valuc.

(e) As 'I > 'I,. more microcracks nre activated. Both new sliding and unstable angle
domains, (± 0'1' ±0d and (± 0"1' ±ad, increase. The corresponding S:l and S~ + S~ can
be computed by using (56) and (57). respectively.

3.4. Mix!!d I1lOd(' III microcrack gro\l'(h
Under combined tensile ,md compressive loads, some microcracks are closed while

others arc open. In addition. somc open microcracks may become closed during loading/
unloading processes. Opcn microcracks grow in mixed mode fashion whcrc,ts closed
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microcracks grow in "modt: II" mannt:r. Tht: mixed mode fracture criterion given in eqn
(35c) is used to dt:tt:rrnint: microcrack stability. To facilitate numt:rical analysis. howt:wr.
it is furtht:r assumt:d that the cross term (B':ki+ B',k~ )K; K;, in (35c) can bt: negkctt:d.
Accordingly. (35cl can be recast as (Kannint:n and Popelar. 1985):

(K;): (K;, Y-- + ~-J=IK,c KIIC1 '
(60a)

where K,c and Kllc dt:nott: critical stress intensity factors of a representative volume.
Nonetheless, since all initial microcracks are assumed to be along weak planes, it is more
rational to write

(60b)

where Ki'c and K,'IC are critical stress intensity factors of weak planes. Again, it is emphasized
that eqn (22) should be employed to solve complex roots.

Let us consider a typical combined loading case in which the 'lxi'll compressil'e stress
is denoted by q Hnd the lateral (eflsile stress is denott:d by q•. Moreover, q. is assumed to
be constunt (relatively small) while q is vHrying from 0 to a certain value. Due to obvious
symmetry of the prohlem, we will derive formulas only for (} within the (0, Tt/2) domain.
During actual numerical integration of compliam:e components, however, both positive
and negative (J hounds should he included. The stresses (1. (= r2) and r'\ (= a',:) on the face
of a typical microcrack at angle (J are

(\ = (- q - q.) sin (J cos U

(61 )

(62)

where tension is taken as positive. The "angle boundary" separating the domains of 01'('11

and closeclmicrocracks can be found by setting a" = O. Hence, we obtain

(63)

The upper and lower bounds for open microcracks are Tt/2 and Vb, respectively.
For closed microcracks (a" < 0), the sliding shear stress reads

(64)

where F(U) == sin IJ cos (J - II cos: O. The criterion for microcrack surface-sliding is

(65)

The V-bound can be obtained by setting r, = 0:

(66a)

where II, == lu,·/(q+q·). Since we require that (J, > 0, there should t::<ist only one 0,:
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_ _I (-I +JI +4H1(Jl-H 1»)e, - tan "H .
- 1
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(66b)

This 0, value is. in fact. the lower angle bounds for closed microcrack sliding. The upper
bound is simply 010 given in (63) since sliding shear stress t, is negative at the eb plane. Only
those microcracks within (± e,. ± 010) will exhibit relative frictional slip on their faces.
Again. it is noted that as q* = 0 (uniaxial compression) or as q -+Xl. then F(e) = 0 and
0, = tan - 1 Il. eb = rr/2. As q increases from O. e, and eb also increase but never exceed
tan - I Il and rr2. respectively.

For closed microcracks. the mixed mode fracture criterion (60b) reduces to the mode
II fracture criterion. Therefore. as in the previous section. a sliding microcrack will experi­
ence mode II microcrack growth once its crack tip stress intensity factor K;I reaches the
critical value 1\~'IC along a weak plane. Accordingly. mode II stability criterion requires the
following loading level q for a specified e

KO ( )IIC 1+ Il *
q = ~F(e) - F(e) q .

The first microcracks to propagate arc those for which q is a minimum:

0:: = tan-I (Il+JIl 2 +1),

(67)

(68)

where it has been assumed that Jlq* of. Ki'l("/fi{~~. If Oi,1 > 010 (opening/closing boundary).
then set 0,'11 =°10 , The corresponding threshold value of q,'/ is

(69)

The mode II angle bounds for unstable weak-plane microcrack growth, (O~II' 0~12)' can
be obtained from eqn (67) :

II I ±J ,-=411;(112 +Il)tan VI' = ~.~---_.__.
u ,u_ 211

2
'

( + *) 2 ~ 4 [KrIC - *J [KrIC + ]q q r r::::- Ilq r::::- M,
V 7tao V rrQo

(70a)

where f/ 2 == ([Kf,c/J~Qol-llq*}/(q+q*). If M* < Ktd~ (typically), then there are
two roots O~II and 1J~12' On the other hand, if Jlq* > K\JICiJnQo (unlikely), then there is only
one root V~I :

(70b)

Note that O~II and O~12 (or simply O~I) should fall within the sliding range (0,,010); see Fig. 2
for a schematic plot.

For open microcracks, a mixed mode fracture criterion such as (70b) may be used to
check microcracks stability. For convenience, let us define IX == Kf,c/Kfc. Hence, (60b) can
be rcphrased as:

(71 )

Substitution of (61), (62) into (71) then renders the microcrack stability condition:
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Fig. 2. An e~ample of dom'lins of mode" microcrack face sliding. unstable microcrack growth and
mi'ed mode unstable microcrack growth. /J. separates the open region from the dosed region.

~ .., ...,.., ., .., , K~ll~'
r( -q COS" O+q* sm- 0)" + (q+q*)' sm- () COS' 0 =

rra"

or, equivalently,

(72)

From (7Jl. we can express q in terms of tan 0, q", :x, and ":I'I~Irran [analogous to (67)], and
solve for threshold values IJ;;' and q;;' corresponding to first microcracks to increase in sile
from 2an to 2af within (lJh , rr/2) domain.

In order to define the unstable "angle domain" for a given if value, we have to solve
eqn (73). Obviously, (73) is amenable to exact solutions. Due to the constr~lint that IJ > 0,
there are at most /Ir(J real solutions to (73): O~'I and 0::2, We recall that the other two
negative IJ solutions will be accounted for during actual numerical integration ofcompliance
components. These angle bounds should fall within the (Oh' rr/2) range. Otherwise, we
should disregard (}::~ and/or O~2' In the event that both roots arc feasible, then un,';f.~lble

open microcrack growth domain is defined by (O::'"O~~) assuming that q* < Kl'cljrrau. If
there is only Of/e feasible root O~' to (73), then the unstable growth domain is detined by
(Ob' V~') for open microcracks. See Fig. 2 for a schematic representation. Typically,
q:;' < qlJ' and then: is only one feasible root to (73).

Therefore, the mixed kinetic evolution for open and dosed microcracks proceeds as
follows.

(a) As q < q:J' and q < q:~', all microcracks arc arrested. At the very beginning, q = 0
and q* > 0, thus all microcracks are open. As q incre~lses, some previously open microcracks
become closet!. Microcracks oriented within the "angle fans" (± V" ± Vb) will slide and
therefore the overall n.:sponse is nonlinear. Further, the "stick" domain increases as q
increases.

(b) As q = q:: or q = q'(;, those microcracks in the plane ±O!i (closed) or ±O;;' (open)
become unstable and change their lengths from 2ao to 2a,.. Note that the mode II and mixed
mode microcracks growth generally do not initiate at the same time.

(c) As q == q, > q:: or q == q, > q'l;, microcracks within the "angle fans" (±O~'" ±O~12)

or (±O:~I' ±O~2) become activated. The sliding "angle fans" (±O" ±Oh) also increase. We
refer to (66b). (70a, b) and (73) for these load-dependent angle values. For open micro­
crads, the "displacement transformation matrix" 8'" is given in eqn (14). For closed
microcracks. 8") is given in Horii and Nemat-Nasser (1983). It is important to recall that
the resulting Sd and oS are non-symmetric in nature. The inelastic compliance S~lIl attributable
to stable mode II .~/idillq microcracks having initial size 2a" can be computed by
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while S~1I due to unstable closed microcracks can be obtained by
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(74)

(75)

In addition. s~m attributable to stable mixed mode open microcracks having initial size 2ao
takes the form

while s~m attributable to unstable open microcracks can be obtained by

(77)

If there is only one feasible root to (73). the integration limits in (76) and (77) should be
replaced by (±O::'. ±1t/2) and (±O". ±O::'). respectively.

(d) As q.. < q < ql. the Im/oadilly case occurs and S::II ;::: s~m 0;:: O. Further. for sliding
closed microcracks. we have

(78)

where ( ±0:,11.0 ',1' ±O~I:.ol") arc the old ranges of mode 1\ unstable microcrack growth at the
p,cl'iou.I·load step. Note that if O~~.o'J > On.new. then O~12.<lI" in (78) should be repl<lced by 0n,new
sinee some mierocr~lcks now bel:ome open <Ind the corresponding l:omplianl:e contribution
should helong to open (mixed mode) region, The domain of sliding dosed mil:rocrads also
reduces ,lfid the Ilew values of ±O, may be obtained from (66b). Hence. it follows that

(79)

For open microcracks. we have

(80)

where (±O::'l.<lld. ± 0~12.01d) is th~~ old range of mixed mode unstable microcrack growth at the
pret'iolis load step. We have assumed that O~2.old < Ob.new' The domain of open microcracks
increases and therefore s~m should be updated:

(81 )

(e) As q > ql. more microcracks are activated. The mode II sliding and unstable angle
domains. ( ±0,. ±0,,) and ( ± O~II' ± O~12)' increase. Similarly. the mixed mode unstable angle
domain. (±O::',. ±O::'2) or (±O". ±(r,:') increases. The corresponding S~II. [S~II+S~1I1. s~m

and [s~m +strnl values can be computed by using (74)-(77). respectively.
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3.4.1. Remark. Mode H weak-plane (interface) microcracks having the size 2ar are
arrested by higher energy barrier of matrix material. However. if axial compressive stress
is increased to a certain level. these microcracks may kink into brittle matrix in a stable
fashion and eventually align with the axial compressive load direction: see. e.g. Nemat·
Nasser and Horii (1982) and Horii and Nemat-Nasser (1985b. 1986). The kinking threshold
stress q"'<nk can be obtained from (see. e.g. Zaitsev (1982. 1983)J:

J3Kic ( Jl) *qk<nk = - I + --1/- q .
2~F(O~) F(Oo)

(82)

The angle bounds for initiation of stable kinked microcracks. (Okl' Od. can be expressed
analogous to (70a) :

where H, := ([J3Ki("!2J~;'~) - jlq.} !(q+ q*). For JUl· < J3Kic/2,,/;;ar. then: are two real
roots. Note that 0kl and O... ~ should fall within (0:.',. O~l!); see Fig. 2.

Assuming stahle microcrack kinking. the "kink length" I can be related to the sliding
shear stress T,: sec. e.g. Zaitsev (1983). Horii and Nemat-Nasscr (1986) and Fanella and
Krajcinovic (1988). For ccmentitious composites below the brittle-ductile transition point.
a simple formula may be used (Zaitscv. 1983):

(84)

where T, is available from eqn (64). Finally. the additional compliance contribution S~"'...
due to kinked microcracks can be computed by

(85)

4. COMPUTATIONAL ALGORITIIMS AND NUMERICAL SIMULATIONS

In this section. computational algorithms arc given for the proposed self·consistent
damage models. In addition. three detailed numerical simulations arc presented. These
include a uniaxial tension test. a uniaxial compression test. and a tension/compression test
of brittle materials. Due to a lack of plane strain experimental data at this stage. however.
an actual experimental validation is not presented. Extensive experimental verification of
the proposed models should be performed in the future. Nevertheless. the presented numeri­
cal simulations demonstrate the potential capability of the proposed micromechanical
damage models to qualitatively explain and model physical behavior of brittle materials.
without resorting to any fitted "material parameter" commonly utilized in phenom­
enological continuum d'lmage models.

4.1. Computational algorithms
A self-consistent kinetic damage model naturally requires iterative sehemes to obtain

the yet unknown elastic-damage compliance S corresponding to specified 'lrea-average
stresses it or remote stresses (1"". As mentioned in Section 2.1. it is assumed that it ~ (1'. in
our problems. For mode r. mode II and mixed mode damage models discussed in Section
3. fortunately. the "sliding angles" ±0•• "unstable angles" ±Ou and "kink angles" ±Ok are
indepcndent of the iterative processes in finding compliances S for sequentially applied loads
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q. Therefore. the computational schemes involved in solving the proposed stress-controlled
micromechanical damage models proceed as follows.

(\) For a given load q. compute "unstable angles" ±0" according to (41) for mode I.
(55) for mode II. as well as (70a. b) and (73) for mixed mode. "Sliding angles" to, are
computed according to (50) for mode [( and (66b) for mixed mode. In addition. "kink
angles" ±O~ are calculated according to (83). The "unstable" and "kink" angle domains
should be stored as history rariab/es. They depend on q only. independent of iterative steps
in the following.

(:!) Solve § iteratively for a specified load q. The natural initial guess for the current 5
is the prel"iolls secant compliance 501d ' At the first loading step. we use the virgin elastic
compliance S" as an initial guess: see also Horii and Nemat-Nasser (1983. p. 168). For
each trial compliance 5'·'. we have to solve eqn (22) so that displacement transformation
matrix B1kl

• crack opening displacements and inelastic compliance Sdlkl can be evaluated.
As noted before. the secant compliance 5 is in general a non-symmetric matrix when
frictional sliding of microcrack faces is present. Equation (22) is simply a fourth order
algebraic equation and is amenable to a closed-form exact solution. Further. we only need
to solve (:!2) once (for each trial compliance SIn) at the orientation plane f} = O. For other
orientations. the local roots ).; can be expressed by the roots )./ at 0 = 0 (lekhnitskii. 1950.
p. 5\):

., ;., cos (1- sin 0
I. = ----..- -- --... ---- .
"/ cos (I +;./ sin (I'

.., X, cos 0 - sin (I
I. = ----.-------.-.-
"' cos () + )./ sin ()

(86)

where X, arc the complex conjugate roots to )"}" Once the roots of (22) in every desired
orientation arc obtained from closed-form solutions. Wkl'. SIlk!" and S"lk) for each microcr<lck
contribution c<ln be obtained from (9a). (14) and (2041 e) in Section 2.2. and from eqn (32)
in 1I0rii and Ncmat-Nasser (19K3).

(3) Ontain the damage-induced compliance S" in (21 b) by numerical integration.
Here. we use Simpson's rule with 201 integration points at various orientations between
( - Ttl:!. Tt/2). The compliance contributions S~. S;I. S;I and S~,"k can be computed by using
(42)-(46) for mode I. (56)-(59) for mode II. (74)-(81) for mixed mode. and (82)-(85) for
kinked microcracks.

(4) Obtain new trial compliance S'''' II by adding S" to S". Compare this new trial
compliance SI'" II with the previous tri<ll S'''I. If the relative error is smaller th<ln a preset
tolerance. then the iterative proeess is said to be converged. On the other hand. if the relative
error is unacceptable. then use SUI' II as <I new estim<lte. and go back to Step (2) to re­
iterate until convergence is reached. This iterative procedure leads to superlinear rate of
eonvergence. and typically requires only 5 to 7 iterations. The convergence criteria we
employ here are based on L~ and L, norms. In particular. we check the following
(TOl = 10 . ") :

(87)

If (87) is satisfied. then convergence is reached. Set S == 5In +- l
) nnd go to Step (5).

(5) Apply the next load C/ncw' Set converged elastic-damage compliance S in Step (4)
to S,.ld and go to Step (I).

4.2. A lIniaxial tension test
A uniaxi.1I tension test is considered in this section (see nlso Sumnrae and Krajcinovic.

1987). For comparison purpose. the results of the self-consistent method arc compared
with those of Tnylor's model. The virgin material is assumed to be isotropic linear elastic
with Young's modulus E' = 4000 ksi (27600 MPa) and V

O = 0.2. Moreover. Ki'c is taken
as 5 ksi-in. I. ~ (5.5 MN m- J ~) and all = 0.6ar.
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Two diffaent initial microcrack area-concentration parameters are considered:
(')" = 0.1131 and 0.2262. Recall that by definition (w) = Nrr(ll:) A. Although the
max.imum allowable value of UJ is I for the self-consistent modeL actual brittle materials
fail at UJ less than I. At the beginning (q ~ qo) and the asymptotic end (q = x) of the
loading sequence, damaged materials are isotropic because microcrack orientations are
perfectly random and microcrack sizes are uniform. Thus. both the self-consistent model
and Taylor's model can be computed analytically for q ~ qo and q = x : see Horii and
Nemat-Nasser (1983). and Sumarac and Krajcinovic (1987). The integration formulas for
Taylor's model are analogous to the self-consistent model (~2)-(~6) with Sdlkl replaced by
(plane strain condition):

(88)

The relative difference in lateral compliances (dotted lines) and axial compliances (solid
lines) between the self-consistent model and Taylor's model for two values of initial damage
w" arc shown in Fig. 3a,b. Notice that the responses of two models are not equivalent even
at ((c/" ~ I due to initial (pre-existing) damage. It is also noted that as q approaches x
(not feasible), the finalmicrocrack arca-concentration paramctcrs w, become O.31~2 and
O.62XJ. respl.:ctively. Further. the relative ditTen.:nce between the self-consistent model and
Taylor's model depl.:nds on the degree of ml.:an microcrack area-concentration (UI). Sl.:e
Fig. 4a.h whl.:re thl.: relative dillcn:ncl.: in compliallCl.:s hetween the two models is plottcd vs
(UI). For low damage concentration «UI) smaller than 27%). thc relative dilferenn: in
complianccs is less than 10%: sec Fig. 4a. For mOlkrate damage «co) between 27% to
45'~',,). the relative difJCrenee ranges from 10''.;', (at 111/0 ~ 1.(4) to approximately 30% (at
1//1/" ~ 2.5): see Fig. 4h. Thus. it appears that use of Taylor's model is aCl:eptahlc for low
damagc cOllcl.:ntratioll. ill agrcemcnt with the finding reported in SUll1arac and Krajcinovic
( IlJX7).

Figure 5a.h display normalizcd stresscs Vl:rsus normalizcd strains eomputcd by the two
models for the same two valucs of CI)". Again. the rciatiVl: dillcn:nce is smaller than 10%
for (w> less than 27%. In addition. the averaged stress-strain behavior is qualitatively
reasonable ror the selr-consistent damage model. The ratios or.~::/S'I versus the normalized
axial stresses ltlqo arc exhihited in Fig. 6a,h. In Fig. 7a,b. the ratios S::/S" arc ploltl:d
against the miemcrack area-concentrarion parameter «(I».

4.3. Ulliaxial co))/pressioll alit! hiaxial tel/Sic))//co))/pressioll tests
A uniaxial compression test and a biaxial tension/compression test arc considered in

this section. The virgin brittle composite material is assumcd to be isotropic linear elastic
with Young's modulus E' = 6000 ksi (41400 MPa) and 1''' = 0.2. Fracture toughness prop­
erties of weak plane (intcrface) and matrix arl: takl:n to be Kit· = 0.15 ksi-in. I 1 (0.165 M N
m \ :), Ki'lC = 0.3 ksi-in. I : (0.33 M N m .1 :), and K¥c = 0.525 ksi-in. I 1 (0.57X 1\1 N m 1 1).

The initial and final microcrack lengths on weak planes are taken as lIr = 0.375 in. (0.953
cm) and lIll = 0.225 in. (0.572 cm). The codlicient of friction on microcrack faces is 0.6. In
addition. if· = 0 for the uniaxial compression test, ". = 0.1 ksi (0.69 MPa. tensile) for the
biaxial tl:st, and (J)1l = 0.2262.

The axial load if is gradually increased from 0 to a certain peak value. For the uniaxial
compression tl:st. all microcracks arc closed throughout the loading sequence. By contrast,
for the tension. compression test, a small lateral tension is applil:d at the very beginning and
all microcracks arc initially OpCIl. As q increases, more and morl: microcracks change states
from open to closed. Thereforc, for the biaxial tensionicomprl:ssion test, some microcracks
arc opl:n and grow in mixl:d modl:, whill: othl:rs arc closed and grow in modc " fashion
during the loading scqul:nce. After mode II microcracks kink into matrix materi.lI, howl:ver.
kinked microcracks arc considered as "tension cracks" and aligned with the ax.ial loading
direction. In hoth tests. kinked microcracks arc assumed to grow in a stahle fashion.
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The m,lcroscopic uxial stress vs the axi,ll (2-direction) and lateral (I-direction) strain
curves arc plotted in Fig. 8 for the plane strain uniaxial compressiofl test. The mode II
microcnlck prop,lgation and kinking threshold stresses arc found to be q:: = 1.27 ksi (8.76
MPa) and qkink = 1.48 ksi (10.21 MPa). Figure 9 depicts the "actiL,(' microcrack area­
concentration" p,lrumeter (WU

) (delined as N1t<a 2)jA) vs the axial load q. It is emphasized
that "no-slip" microcracks arc excluded from (wa

) sinl.:e they do not contribute to either
strain or St.'Cant compliance. Moreover. no-slip and sliding anglc fans arefixed throughout
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Fig. 9. The "activo: microcrilck are.l-concentriltion" parameter (w') vs the axial stress q for the
uni"xi,,1 compression test.
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the loading process. That is. 0" = tan' I Jl and 0,2 = Te/2. As a consequence. (w") is jix('c/
before mode II microcrack propagation occurs. Figure 10 displays Sal and S22 vs (w"). It
is observed th'lt the lateral compliance component S II is much larger than the axi.tl
compliance component SZ2 bt.:causc of the formation of many kinked microcracks. SI2 and
SZI vs <w") are given in Fig. II. Notice that S21 is larger than SI2 due to sliding microcrack
disphlcements. Furthermore. Fig. 12 exhibits the shear compliance component SH VS <w").
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For the biaxial tension/compression test, the response is initially isotropic at if = 0 and
if· = 0.1 ksi (0.69 MP<t, a sm<tlliateral tension) because <til microcracks arc initi<tlly open
and of uniform sizc. Latcr. <ts q incrcascs. some microcracks become closed and even
become stuck (no-slip). Thus, 5; <tnd «(If') slightly decrease before mode 11 microcrack
propagation starts. From numerical computation, the modc JI microcrack prop<tgation
threshold stress is found to be q:: = 0.95 ksi (6.56 MPa), the microcrack kinking threshold
stress ifklllk = 1.17 ksi (It07 M Pal, and the mixed mode threshold stress q:;' = 1.28 ksi (8.83
MPa). This implies that mode II microcrack growth in c/IJ.I"t'cI domain occurs well before
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mixed mode microcrack growth takes place in ope/l domain. Evenlually. it is numerically
observed lh;tt 0:,1: = 0t> = 0::'1' The macroscopic axial stress vs the axi;ll and lateral strain
curves arc plotted in Fig. 13. Figure 14 shows (/If') vs the axial load i/. Figure 15 displays
SII and S:: vs (III"). Again. 8 11 is mlll:h larger lhan S!: because of kinked microcracks.
8 I: and S: I vs «(If') arc shown in Fig. 16. Figure 17 gives the shear l:oll1pliance l:omponenl
S \ I VS (w"). Note lhal SII' S:! and S \\slighlly del:rease at the beginning due lu the inl:rease
of "no-slip" mil:rocral:k domain.
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By comparing Fig. X with Fig. 13. it is seen that microcrack propagation and kinking
thn.:shold stresses {,:~ and lf~",~ as well as the peak stress significantly decrease in the presel1l:e
ofa small latcral lension (, •. In addition. the lateral strain orthe biaxial tension/compression
test is higher than that of the uniaxial compression test.

5. CLOSURE

Following the framework proposed by Krajcinovic and Fandla (19X6). the proposed
micromechanical brittle damage models do not re4uire the usc of additional titted "material
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parameters" other than well-defined elastic constants and fracture toughness of constituent
phases. Thermodynamic basis. effective averaged field equations. microcrack opening dis­
placements and damage-induced inelastic compliance are given within the context of two­
dimensional self-consistent method. It is emphasized that secant compliances are generally
non-symmetric.

Fracture mechanics stability criteria together with microstructural geometry are
employed to characterize microcrack evolutions under mode I. mode II and mixed mode.
Simple and etlicient computational algorithms are presented. In addition. three detailed
numerical simulations are given. Finally. it is emphasized that loading/unloading stress
paths and microcrack opening,closing status changes are easily accommodated with the
context of the proposed damage models.
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